×

Numerical and approximate solutions for two-dimensional hyperbolic telegraph equation via wavelet matrices. (English) Zbl 1515.65259

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L15 Initial value problems for second-order hyperbolic equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

Algorithm 432

References:

[1] Kirillov, VV; Kopeykin, VN, Solving a two-dimensional telegraph equation with anisotropic parameters, Radiophys Quantum Electron, 45, 929-941 (2002) · doi:10.1023/A:1023525331531
[2] Dehghan, M.; Mohebbi, A., The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation, Numer Methods Partial Differ Eq, 24, 897-910 (2008) · Zbl 1143.65079 · doi:10.1002/num.20295
[3] Wollkind, David J., Applications of linear hyperbolic partial differential equations: predator-prey systems and gravitational instability of nebulae, Math Model., 7, 413-428 (1986) · Zbl 0611.92026 · doi:10.1016/0270-0255(86)90061-8
[4] Dehghan, M.; Lakestani, M., The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation, Numer Methods Partial Differ Eq, 25, 4, 931-938 (2009) · Zbl 1169.65102 · doi:10.1002/num.20382
[5] Dehghan, M.; Ghesmati, A., Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng Anal Bound Elem, 34, 1, 51-59 (2010) · Zbl 1244.65137 · doi:10.1016/j.enganabound.2009.07.002
[6] Dehghan, M.; Salehi, R., A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation, Math Methods Appl Sci, 35, 10, 1120-1233 (2012) · Zbl 1250.35015 · doi:10.1002/mma.2517
[7] Goldstein, S., On diffusion by discontinuous movements, and on the telegraph equation, The Quarterly J Mech Appl Math, 4, 129-156 (1951) · Zbl 0045.08102 · doi:10.1093/qjmam/4.2.129
[8] Weston, VH; He, S., Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Prob, 9, 789-812 (1993) · Zbl 0797.35168 · doi:10.1088/0266-5611/9/6/013
[9] Jordan, PM; Puri, A., Digital signal propagation in dispersive media, Appl Phys, 85, 1273-1282 (1999) · doi:10.1063/1.369258
[10] Tolubinsky, EV, The theory of transfer processes (1969), Kiev: Naukova Dumka, Kiev · Zbl 0176.54802
[11] Bartlett, MS, A note on random walks at constant speed, Adv Appl Probab, 10, 704-707 (1978) · Zbl 0415.60065 · doi:10.2307/1426647
[12] Orsingher, E., Hyperbolic equations arising in random models, Stoch Process Appl, 21, 93-106 (1985) · Zbl 0601.60052 · doi:10.1016/0304-4149(85)90379-5
[13] Salkuyeh, DK; Ghehsareh, HR, Convergence of the variational iteration method for the telegraph equation, Numer Method Partial Differ Eq, 27, 1442-1455 (2011) · Zbl 1232.65134 · doi:10.1002/num.20590
[14] Dehghan, M.; Ghesmati, A., Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equations, Eng Anal Bound Elem, 34, 324-336 (2010) · Zbl 1244.65147 · doi:10.1016/j.enganabound.2009.10.010
[15] Gao, F.; Chi, C., Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation, Appl Math Comput, 187, 1272-1276 (2007) · Zbl 1114.65347
[16] Mohanty, RK, An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation, Appl Math Lett, 17, 101-105 (2004) · Zbl 1046.65076 · doi:10.1016/S0893-9659(04)90019-5
[17] Mohanty, RK, An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients, Appl Math Comput, 165, 229-236 (2005) · Zbl 1070.65076
[18] Dehghan, M.; Yousefi, SA; Lotfi, A., The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations, I J Numer Methods Biomed Eng, 27, 219-231 (2011) · Zbl 1210.65173 · doi:10.1002/cnm.1293
[19] Mohebbi, A.; Dehghan, M., High order compact solution of the one-space-dimensional linear hyperbolic equation, Numer Methods Partial Differ Eq, 24, 1222-1235 (2008) · Zbl 1151.65071 · doi:10.1002/num.20313
[20] Lakestani, M.; Saray, BN, Numerical solution of telegraph equation using interpolating scaling functions, Comput Math Appl, 60, 1964-1972 (2010) · Zbl 1205.65288 · doi:10.1016/j.camwa.2010.07.030
[21] Dehghan, M.; Shokri, A., A numerical method for solving the hyperbolic telegraph equation, Numer Methods Partial Differ Eq, 24, 1080-1093 (2008) · Zbl 1145.65078 · doi:10.1002/num.20306
[22] Dehghan, M.; Shokri, A., A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions, Numer Method Partial Differ Eq, 25, 494-506 (2009) · Zbl 1159.65084 · doi:10.1002/num.20357
[23] Dehghan, M.; Shokri, A., A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation, Math Meth Appl Sci, 35, 1220-1233 (2012) · Zbl 1250.35015 · doi:10.1002/mma.2517
[24] Saadatmandi, A.; Dehghan, M., Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer Meth Partial Differ Eq, 26, 239-252 (2010) · Zbl 1186.65136 · doi:10.1002/num.20442
[25] Bülbül, B.; Sezer, M., Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients, I J Comput Math, 88, 533-544 (2011) · Zbl 1211.65131
[26] Heydari, MH; Hooshmandasl, MR; Ghaini, FMM, A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Appl Math Model, 38, 1597-1606 (2014) · Zbl 1427.65287 · doi:10.1016/j.apm.2013.09.013
[27] Dehghan, M.; Mohebbi, A., High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation, Numer Method Partial Differ Eq, 25, 232-243 (2009) · Zbl 1156.65087 · doi:10.1002/num.20341
[28] Mohanty, RK; Jain, MK; Arora, U., An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions, I J Comput Math, 79, 133-142 (2002) · Zbl 0995.65093
[29] Ding, H.; Zhang, Y., A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation, J Comput Appl Math, 230, 626-632 (2009) · Zbl 1168.65373 · doi:10.1016/j.cam.2009.01.001
[30] Jiwari, R.; Pandit, S.; Mittal, RC, A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Appl Math Comput, 218, 7279-7294 (2012) · Zbl 1246.65174
[31] Mittal, RC; Bhatia, R., Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method, Appl Math Comput, 220, 496-506 (2013) · Zbl 1329.65237
[32] Mittal, RC; Bhatia, R., A numerical study of two dimensional hyperbolic telegraph equation by modified B-spline differential quadrature method, Appl Math Comput, 244, 976-997 (2014) · Zbl 1336.65178
[33] Singh, S.; Patel, VK; Singh, VK; Tohidi, E., Application of Bernoulli matrix method for solving two-dimensional hyperbolic telegraph equations with Dirichlet boundary conditions, Comput Math Appl, 75, 2280-2294 (2018) · Zbl 1409.65078 · doi:10.1016/j.camwa.2017.12.003
[34] Singh, S.; Patel, VK; Singh, VK; Tohidi, E., Numerical solution of nonlinear weakly singular partial integro-differential equation via operational matrices, Appl Math Comput, 298, 310-321 (2017) · Zbl 1411.65139
[35] Patel, VK; Singh, S.; Singh, VK, Two-dimensional shifted Legendre polynomial collocation method for electromagnetic waves in dielectric media via almost operational matrices, Math Methods Appl Sci, 40, 3698-3717 (2017) · Zbl 1373.78454 · doi:10.1002/mma.4257
[36] Patel, VK; Singh, S.; Singh, VK, Two-dimensional wavelets collocation method for electromagnetic waves in dielectric media, J Comput Appl Math, 317, 307-330 (2017) · Zbl 1361.78004 · doi:10.1016/j.cam.2016.11.026
[37] Patel, VK; Singh, S.; Singh, VK; Tohidi, E., Two dimensional wavelets collocation scheme for linear and nonlinear Volterra weakly singular partial integro-differential equations, I J Appl Comput Math, 4, 32 (2018) · Zbl 1401.35306
[38] Singh, VK; Singh, VK; Postnikov, EB, Application of piecewise expansion based on 2D Legendre wavelets for fractional partial differential equation, I J Pure Appl Math, 119, 16, 5159-5167 (2018)
[39] Saadatmani, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput Math Appl, 59, 3, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[40] Eslahchi, MR; Dehghan, M., Application of Taylor series in obtaining the orthogonal operational matrix, Comput Math Appl, 61, 9, 2596-2604 (2011) · Zbl 1221.33016 · doi:10.1016/j.camwa.2011.03.004
[41] Lakestani, M.; Saray, BN; Dehghan, M., Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwavelets, J Comput Appl Math, 235, 11, 3291-3303 (2011) · Zbl 1216.65185 · doi:10.1016/j.cam.2011.01.043
[42] Sadeghi, M.; Mohammadi, F.; Aalipour, N., Numerical study of the radial Schr \(\ddot{o}\) dinger Equation for Hydrogen atom using Legendre wavelet, CJMS, 8, 35-42 (2019) · Zbl 1449.81001
[43] Heydari, MH; Hooshmandasl, MR; Ghaini, FMM; Fereidouni, F., Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng Anal Bound Elem, 37, 1331-1338 (2013) · Zbl 1287.65113 · doi:10.1016/j.enganabound.2013.07.002
[44] Bartels, R., Algorithm 432, solution of the matrix equation AX+ XB= C, Commun Assoc Comput Mach, 15, 820-826 (1972) · Zbl 1372.65121
[45] Tohidi, E.; Toutounian, F., Convergence analysis of Bernoulli matrix approach for one-dimensional matrix hyperbolic equations of the first order, Comput Math Appl, 68, 1-12 (2014) · Zbl 1368.65201 · doi:10.1016/j.camwa.2014.05.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.