×

Vector boson oscillator in the near-horizon of the BTZ black hole. (English) Zbl 1517.83039

Summary: We investigate the interaction of a generalized vector boson oscillator with the near-horizon geometry of the Bañados-Teitelboim-Zanelli (BTZ) black hole and try to determine the corresponding quasibound state frequencies. To do this, we seek an analytical solution of the relativistic vector boson equation, derived as an excited state of Zitterbewegung, with Cornell-type non-minimal coupling in the near-horizon geometry of the BTZ black hole. The vector boson equation includes a symmetric spinor of rank two and this allows to obtain an analytical solution of the corresponding equation. By imposing appropriate boundary conditions, we show that it is possible to arrive at a relativistic frequency (\(\omega\)) expression in the form of \(\omega = \omega_{\mathcal{R}e} + \omega_{\mathcal{I}m}\). Our results show that real (\(\propto\omega_{\mathcal{R}e}\)) and damped (\(\propto\frac{1}{|\omega_{\mathcal{I}m}|}\)) oscillations depend on the parameters of the background geometry, coefficients of the non-minimal coupling and strength of the oscillator. This allows us to analyse the effects of both non-minimal coupling and spacetime parameters on the evolution of the considered vector field. We discuss the results in details and see also that the background is stable under the perturbation field in question.

MSC:

83C57 Black holes
81V73 Bosonic systems in quantum theory
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
Full Text: DOI

References:

[1] Carvalho, J.; Furtado, C.; Moraes, F., Dirac oscillator interacting with a topological defect, Phys. Rev. A, 84 (2011) · doi:10.1103/PhysRevA.84.032109
[2] Sucu, Y.; Ünal, N., Exact solution of Dirac equation in 2 + 1 dimensional gravity, J. Math. Phys., 48 (2007) · Zbl 1144.81415 · doi:10.1063/1.2735442
[3] Oliveira, R. R S., Topological, noninertial and spin effects on the 2D Dirac oscillator in the presence of the Aharonov-Casher effect, Eur. Phys. J. C, 79, 1-8 (2019) · doi:10.1140/epjc/s10052-019-7237-y
[4] Barut, A. O.; Duru, I. H., Exact solutions of the Dirac equation in spatially flat Robertson-Walker space-times, Phys. Rev. D, 36, 3705 (1987) · doi:10.1103/PhysRevD.36.3705
[5] Parker, L., One-electron atom in curved space-time, Phys. Rev. Lett., 44, 1559 (1980) · Zbl 1404.81137 · doi:10.1103/PhysRevLett.44.1559
[6] Guvendi, A.; Sucu, Y., An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string, Phys. Lett. B, 811 (2020) · Zbl 1475.83139 · doi:10.1016/j.physletb.2020.135960
[7] de Montigny, M.; Zare, S.; Hassanabadi, H., Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time, Gen. Relativ. Gravit., 50, 1-24 (2018) · Zbl 1392.83016 · doi:10.1007/s10714-018-2370-8
[8] Ahmed, F., Relativistic motions of spin-zero quantum oscillator field in a global monopole space-time with external potential and AB-effect, Sci. Rep., 12, 1-14 (2022) · doi:10.1038/s41598-022-12745-w
[9] Sucu, Y.; Ünal, N., Vector bosons in the expanding universe, Eur. Phys. J. C, 44, 287-91 (2005) · doi:10.1140/epjc/s2005-02356-0
[10] Cuzinatto, R. R.; de Montigny, M.; Pompeia, P. J., Non-commutativity and non-inertial effects on a scalar field in a cosmic string space-time: I. Klein-Gordon oscillator, Class. Quantum Grav., 39 (2022) · Zbl 1487.83081 · doi:10.1088/1361-6382/ac51bb
[11] Barut, A. O.; Ünal, N., Radial equations for the relativistic two-fermion problem with the most general electric and magnetic potentials, Fortschr. Phys./Prog. Phys., 33, 319-32 (1985) · doi:10.1002/prop.2190330603
[12] Guvendi, A., Relativistic Landau levels for a fermion-antifermion pair interacting through Dirac oscillator interaction, Eur. Phys. J. C, 81, 1-7 (2021) · doi:10.1140/epjc/s10052-021-08913-3
[13] Mustafa, O., PDM Klein-Gordon oscillators in cosmic string spacetime in magnetic and Aharonov-Bohm flux fields within the Kaluza-Klein theory, Ann. Phys., NY, 440 (2022) · Zbl 1495.83066 · doi:10.1016/j.aop.2022.168857
[14] Guvendi, A.; Hassanabadi, H., Relativistic vector bosons with non-minimal coupling in the spinning cosmic string spacetime, Few-Body Syst., 62, 1-8 (2021) · doi:10.1007/s00601-021-01652-x
[15] Guvendi, A., Dynamics of a composite system in a point source-induced space-time, Int. J. Mod. Phys. A, 36 (2021) · doi:10.1142/S0217751X2150144X
[16] Konoplya, R. A.; Zhidenko, A., Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys., 83, 793 (2011) · doi:10.1103/RevModPhys.83.793
[17] Dogan, S. G.; Sucu, Y., Quasinormal modes of Dirac field in 2 + 1 dimensional gravitational wave background, Phys. Lett. B, 797 (2019) · Zbl 1427.81029 · doi:10.1016/j.physletb.2019.134839
[18] Achour, M.; Khodja, L.; Zaim, S., Noncommutative DKP field and pair creation in curved space-time, Int. J. Mod. Phys. A, 34 (2019) · Zbl 1415.83030 · doi:10.1142/S0217751X19500829
[19] Guvendi, A.; Zare, S.; Hassanabadi, H., Vector boson oscillator in the spiral dislocation spacetime, Eur. Phys. J. A, 57, 1-6 (2021) · doi:10.1140/epja/s10050-021-00514-8
[20] Guvendi, A.; Hassanabadi, H., Noninertial effects on a composite system, Int. J. Mod. Phys. A, 36 (2021) · doi:10.1142/S0217751X21502535
[21] Guvendi, A.; Sucu, Y., The lifetimes for each state of l = 0 levels of the para-positronium, Eur. Phys. J Plus, 136, 1-10 (2021) · doi:10.1140/epjp/s13360-021-01425-9
[22] Guvendi, A.; Sahin, R.; Sucu, Y., Exact solution of an exciton energy for a monolayer medium, Sci. Rep., 9, 1-6 (2019) · doi:10.1038/s41598-019-45478-4
[23] Guvendi, A.; Sahin, R.; Sucu, Y., Binding energy and decaytime of exciton in dielectric medium, Eur. Phys. J. B, 94, 1-7 (2021) · doi:10.1140/epjb/s10051-020-00030-6
[24] Moshinsky, M.; Szczepaniak, A., The Dirac oscillator, J. Phys. A: Math. Gen., 22, L817 (1989) · doi:10.1088/0305-4470/22/17/002
[25] Bruce, S.; Minning, P., The Klein-Gordon oscillator, Il Nuovo Cimento A (1965-1970), 106, 711-3 (1993) · doi:10.1007/BF02787240
[26] Nedjadi, Y.; Barrett, R. C., The Duffin-Kemmer-Petiau oscillator, J. Phys. A: Math. Gen., 27, 4301 (1994) · Zbl 0829.35135 · doi:10.1088/0305-4470/27/12/033
[27] Dogan, S. G., Two-dimensional vector boson oscillator, Sakarya Univ. J. Sci., 25, 1210-7 (2021) · doi:10.16984/saufenbilder.938739
[28] Guvendi, A., Effects of rotating frame on a vector boson oscillator, Sakarya Univ. J. Sci., 25, 834-40 (2021) · doi:10.16984/saufenbilder.911340
[29] Bentez, J.; y Romero, R. P M.; Núez-Yépez, H. N.; Salas-Brito, A. L., Solution and hidden supersymmetry of a Dirac oscillator, Phys. Rev. Lett., 64, 1643 (1990) · Zbl 1050.81524 · doi:10.1103/PhysRevLett.64.1643
[30] Zare, S.; Hassanabadi, H.; Guvendi, A., Relativistic Landau quantization for a composite system in the spiral dislocation spacetime, Eur. Phys. J Plus, 137, 1-8 (2022) · doi:10.1140/epjp/s13360-022-02802-8
[31] Moshinsky, M.; Loyola, G., Barut equation for the particle-antiparticle system with a Dirac oscillator interaction, Found. Phys., 23, 197-210 (1993) · doi:10.1007/BF01883624
[32] Guvendi, A.; Boumali, A., Superstatistical properties of a fermion-antifermion pair interacting via Dirac oscillator coupling in one-dimension, Eur. Phys. J Plus, 136, 1-18 (2021) · doi:10.1140/epjp/s13360-021-02083-7
[33] Franco-Villafañe, J. A.; Sadurni, E.; Barkhofen, S.; Kuhl, U.; Mortessagne, F.; Seligman, T. H., First experimental realization of the Dirac oscillator, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.170405
[34] Barut, A. O., Excited states of zitterbewegung, Phys. Lett. B, 237, 436-9 (1990) · doi:10.1016/0370-2693(90)91202-M
[35] Vilenkin, A., Cosmic strings and domain walls, Phys. Rep., 121, 263-315 (1985) · Zbl 0966.83541 · doi:10.1016/0370-1573(85)90033-X
[36] Soares, A. R.; Vitória, R. L L.; Aounallah, H., On the Klein-Gordon oscillator in topologically charged Ellis-Bronnikov-type wormhole spacetime, Eur. Phys. J Plus, 136, 1-8 (2021) · doi:10.1140/epjp/s13360-021-01965-0
[37] Guvendi, A.; Zare, S.; Hassanabadi, H., Exact solution for a fermion-antifermion system with Cornell type nonminimal coupling in the topological defect-generated spacetime, Phys. Dark Universe, 38 (2022) · doi:10.1016/j.dark.2022.101133
[38] Guica, M.; Hartman, T.; Song, W.; Strominger, A., The Kerr/CFT correspondence, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.124008
[39] Corichi, A.; Gomberoff, A., On a spacetime duality in 2 + 1 gravity, Class. Quantum Grav., 16, 3579 (1999) · Zbl 0948.83066 · doi:10.1088/0264-9381/16/11/309
[40] Barrow, J. D.; Burd, A. B.; Lancaster, D., Three-dimensional classical spacetimes, Class. Quantum Grav., 3, 551 (1986) · doi:10.1088/0264-9381/3/4/010
[41] Carlip, S., The (2 + 1)-dimensional black hole, Class. Quantum Grav., 12, 2853 (1995) · Zbl 0839.53071 · doi:10.1088/0264-9381/12/12/005
[42] Deser, S.; Jackiw, R.; Hooft, G., Three-dimensional Einstein gravity: dynamics of flat space, Ann. Phys., NY, 152, 220-35 (1984) · doi:10.1016/0003-4916(84)90085-X
[43] Deser, S.; Jackiw, R., Classical and quantum scattering on a cone, Commun. Math. Phys., 118, 495-509 (1988) · Zbl 0655.58038 · doi:10.1007/BF01466729
[44] Hooft, G., Non-perturbative 2 particle scattering amplitudes in 2 + 1 dimensional quantum gravity, Commun. Math. Phys., 117, 685-700 (1988) · Zbl 0663.47007 · doi:10.1007/BF01218392
[45] Witten, E., 2 + 1 dimensional gravity as an exactly soluble system, Nucl. Phys. B, 311, 46-78 (1988) · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[46] Banados, M.; Teitelboim, C.; Zanelli, J., Black hole in three-dimensional spacetime, Phys. Rev. Lett., 69, 1849-51 (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[47] Lamprou, N.; Nonis, S.; Tetradis, N., The BTZ black hole with a time-dependent boundary, Class. Quantum Grav., 29 (2011) · Zbl 1235.83062 · doi:10.1088/0264-9381/29/2/025002
[48] Slagter, R. J., On the BTZ black hole and the spinning cosmic string, J. Astrophys. Astron., 41, 1-7 (2020) · doi:10.1007/s12036-020-09645-8
[49] Banados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J., Geometry of the 2+1 black hole, Phys. Rev. D, 48, 1506 (2013) · doi:10.1103/PhysRevD.48.1506
[50] Li, R.; Ren, J-R, Dirac particles tunneling from BTZ black hole, Phys. Lett. B, 661, 370-2 (2008) · Zbl 1282.83035 · doi:10.1016/j.physletb.2008.01.077
[51] Sarkar, T.; Sengupta, G.; Tiwari, B. N., On the thermodynamic geometry of BTZ black holes, J. High Energy Phys., JHEP11(2006)015 (2006) · doi:10.1088/1126-6708/2006/11/015
[52] Cai, R-G; Cho, J-H, Thermodynamic curvature of the BTZ black hole, Phys. Rev. D, 60 (1999) · doi:10.1103/PhysRevD.60.067502
[53] Emparan, R.; Horowitz, G. T.; Myers, R. C., Exact description of black holes on branes II: comparison with BTZ black holes and black strings, J. High Energy Phys., JHEP01(2000)021 (2000) · Zbl 0990.83524 · doi:10.1088/1126-6708/2000/01/021
[54] Vagenas, E. C., Energy distribution in a BTZ black hole spacetime, Int. J. Mod. Phys. D, 14, 573-85 (2005) · Zbl 1079.83019 · doi:10.1142/S0218271805006055
[55] Cardoso, V.; Lemos, J. P S., Scalar, electromagnetic and Weyl perturbations of BTZ black holes: quasinormal modes, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.124015
[56] Medved, A. J M., Radiation via tunnelling in the charged BTZ black hole, Class. Quantum Grav., 19, 589 (2002) · Zbl 0994.83033 · doi:10.1088/0264-9381/19/3/313
[57] Setare, M. R., Non-rotating BTZ black hole area spectrum from quasi-normal modes, Class. Quantum Grav., 21, 1453 (2004) · Zbl 1170.83422 · doi:10.1088/0264-9381/21/6/012
[58] Carlip, S., Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quantum Grav., 22, R85 (2005) · Zbl 1098.83001 · doi:10.1088/0264-9381/22/12/R01
[59] Iorio, A.; Lambiase, G.; Pais, P.; Scardigli, F., Generalized uncertainty principle in three-dimensional gravity and the BTZ black hole, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.105002
[60] Hendi, S. H.; Panahiyan, S.; Upadhyay, S.; Panah, B. E., Charged BTZ black holes in the context of massive gravity’s rainbow, Phys. Rev. D, 95 (2017) · Zbl 1370.83078 · doi:10.1103/PhysRevD.95.084036
[61] Cvetič, M.; Gibbons, G. W., Graphene and the Zermelo optical metric of the BTZ black hole, Ann. Phys., NY, 327, 2617-26 (2012) · Zbl 1252.82132 · doi:10.1016/j.aop.2012.05.013
[62] Mann, R. B.; Solodukhin, S. N., Quantum scalar field on a three-dimensional (BTZ) black hole instanton: heat kernel, effective action and thermodynamics, Phys. Rev. D, 55, 3622 (1997) · doi:10.1103/PhysRevD.55.3622
[63] Gecim, G.; Sucu, Y., Quantum gravity effect on the Hawking radiation of charged rotating BTZ black hole, Gen. Relativ. Gravit., 50, 1-15 (2018) · Zbl 1409.83077 · doi:10.1007/s10714-018-2478-x
[64] Dogan, S. G.; Guvendi, A., Quasibound states for scalar field under the influence of an external magnetic field in the near-horizon geometry of the BTZ black hole with torsion (2022)
[65] Sfetsos, K.; Skenderis, K., Microscopic derivation of the Bekenstein-Hawking entropy formula for non-extremal black holes, Nucl. Phys. B, 517, 179-204 (1998) · Zbl 0920.53048 · doi:10.1016/S0550-3213(98)00023-6
[66] Strominger, A., Black hole entropy from near-horizon microstates, J. High Energy Phys., JHEP02(1998)009 (1998) · Zbl 0955.83010 · doi:10.1088/1126-6708/1998/02/009
[67] Birmingham, D.; Sachs, I.; Sen, S., Exact results for the BTZ black hole, Int. J. Mod. Phys. D, 10, 833-57 (2001) · Zbl 1155.83343 · doi:10.1142/S0218271801001207
[68] Hawking, S. W., Black hole explosions?, Nature, 248, 30-31 (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[69] Hawking, S. W., Particle Creation by Black Holes (Euclidean Quantum Gravity), pp 167-88 (1975), Singapore: World Scientific, Singapore · Zbl 1378.83040
[70] Regge, T.; Wheeler, J. A., Stability of a Schwarzschild singularity, Phys. Rev., 108, 1063 (1957) · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[71] Zerilli, F. J., Effective potential for even-parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett., 24, 737 (1970) · doi:10.1103/PhysRevLett.24.737
[72] Zerilli, F. J., Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry, Phys. Rev. D, 9, 860 (1974) · doi:10.1103/PhysRevD.9.860
[73] Chandrasekhar, S.; Thorne, K. S., The mathematical theory of black holes, Clarendon, vol 646 (1985), Oxford: Clarendon, Oxford
[74] Dolan, S. R., Instability of the massive Klein-Gordon field on the Kerr spacetime, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.084001
[75] Vieira, H. S.; Kokkotas, K. D., Quasibound states of Schwarzschild acoustic black holes, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.024035
[76] Hod, S., Quasi-bound state resonances of charged massive scalar fields in the near-extremal Reissner-Nordström black-hole spacetime, Eur. Phys. J. C, 77, 1-6 (2017) · doi:10.1140/epjc/s10052-017-4920-8
[77] Huang, Y.; Zhang, H., Quasibound states of charged dilatonic black holes, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.044062
[78] Cannizzaro, E.; Caputo, A.; Sberna, L.; Pani, P., Plasma-photon interaction in curved spacetime: formalism and quasibound states around nonspinning black holes, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.124018
[79] Deser, S.; Jackiw, R.; Hooft, G., Three-dimensional Einstein gravity: dynamics of flat space, Ann. Phys., NY, 152, 220-35 (1984) · doi:10.1016/0003-4916(84)90085-X
[80] Guvendi, A.; Dogan, S. G., Effect of internal magnetic flux on a relativistic spin-1 oscillator in the spinning point source-generated spacetime (2022)
[81] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1965), Mineola, NY: Dover Publications, Mineola, NY
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.