×

Plemelj formula of inframonogenic functions and their boundary value problems. (English) Zbl 1520.30072

Summary: In this paper, firstly, we study the continuity of Cauchy-type integral operator \(C_\Gamma^{\text{infra}}\) associated with inframonogenic functions and give the Plemelj formula. Secondly, we prove the properties of the Teodorescu operator related to the inframonogenic functions, including its boundness, continuity and differentiability. Finally, we give the related integral representation of Riemann boundary value problems for inframonogenic functions and generalized inframonogenic functions.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
30E25 Boundary value problems in the complex plane
Full Text: DOI

References:

[1] Malonek, H.; Pena Pena, D.; Sommen, F., Fischer decomposition by inframonogenic functions, Cubo, 12, 2, 189-197 (2010) · Zbl 1217.30047
[2] Malonek, H.; Pena Pena, D.; Sommen, F., A Cauchy-Kowalevski theorem for inframonogenic functions, Math J Okayama University, 53, 1, 167-172 (2009) · Zbl 1235.30031
[3] Moreno-García, A.; Moreno-García, T.; Abreu-Blaya, R., A Cauchy integral formula for inframonogenic functions in Clifford analysis, Adv Appl Clifford Algebras, 27, 2, 1-13 (2016)
[4] Moreno-García, A.; Moreno-García, T.; Abreu-Blaya, R., Inframonogenic functions and their applications in 3-dimensional elasticity theory, Math Meth Appl Sci, 41, 10, 3622-3631 (2018) · Zbl 1400.30054
[5] Muskhelishvili, NI., Singular integral equations (1953), Groningen: Noordhoof, Groningen · Zbl 0051.33203
[6] Bers, L., Theory of pseudo-analytic functions (1953), New York University: Institute for Mathematics and Mechanics, New York University · Zbl 0051.31603
[7] Vekua, IN., Generalized analytic functions (1962), Oxford: Pergamon, Oxford · Zbl 0100.07603
[8] Stein, EM., Singular integrals and differentiability properties of functions (1970), Princeton (NJ): Princeton Univ Press, Princeton (NJ) · Zbl 0207.13501
[9] Gakhov, FD., Boundary value problems (1977), Moscow: Izdat. Nauka, Moscow · Zbl 0449.30030
[10] Kats, BA., Riemann boundary value problem on closed Jordan curve, Izv VUZov, Math, 4, 68-80 (1983) · Zbl 0523.30033
[11] Lu, JK., Boundary value problems for analytic functions (1993), Singapore: World Scientific, Singapore · Zbl 0818.30027
[12] Wen, GC, Begehr, H. Boundary value problems for elliptic equations and systems. Pitman monographs and surveys in pure and applied mathematics. Vol. 46, (Harlow: Longman Scientic and Technical; New York: Copublished in the United States with John Wiley and Sons, Inc.), 1990. · Zbl 0711.35038
[13] Xu, ZY., On linear and nonlinear Riemann-Hilbert problems for regular function with values in a Clifford algebra, Chin Ann Math, 11, 3, 349-357 (1990) · Zbl 0722.30038
[14] Huang, S.; Qiao, YY; Wen, GC., Real and complex Clifford analysis (2006), New York: Springer, New York · Zbl 1096.30042
[15] Du, JY; Xu, N.; Zhang, ZX., Boundary behavior of Cauchy-type integrals in Clifford analysis, Acta Mathematica Scientia, 29, 1, 210-224 (2009) · Zbl 1199.30267
[16] Abreu-Blaya, R.; Bory-Reyes, J.; Kats, BA., Integration over nonrectifiable curves and Riemann boundary value problems, J Math Anal Appl, 380, 1, 177-187 (2011) · Zbl 1218.30104
[17] Trogdon, T.; Olver, S., Riemann-Hilbert problems, their numerical solution, and the computation of nonlinear special functions (2015), Philadelphia: SIAM, Philadelphia
[18] Kats, BA; Katz, DB., Marcinkiewicz exponents and integrals over non-rectifiable paths, Math Methods Appl Sci, 39, 12, 3402-3410 (2016) · Zbl 1350.30061
[19] Wang, LP; Yang, HJ; Qiao, YY., Some properties of quasi-Cauchy-type singular integral operator on unbounded domains, Complex Var Elliptic Equ, 59, 9, 1249-1268 (2014) · Zbl 1295.30117
[20] Gao, L.; Wang, LP; Yang, P., The properties and iterative approximation of Cauchy-type integral operators associated with the Helmholtz equation, Complex Var Elliptic Equ, 64, 4, 631-648 (2019) · Zbl 1416.35087
[21] Hile, GN., Elliptic systems in the plane with first order terms and constant coefficients, Commun Partial Differ Equ, 3, 949-977 (1978) · Zbl 0393.35011
[22] Gilbert, RP; Hou, ZY; Meng, XW., Vekua theory in higher dimensional complex spaces: the Π-operator in \(####\), Complex Variables, Theor Appl, 21, 1, 99-105 (1993) · Zbl 0796.32003
[23] Gürlebeck, K.; Sprössig, W., Quaternionic analysis and Clifford calculus for physicists and engineers (1997), Chichester: John Wiley and Sons, Chichester · Zbl 0897.30023
[24] Yang, HJ; Qiao, YY; Wang, LP., Some properties of a kind of higher order singular Teodorescu operator in \(####\), Appl Anal, 91, 1, 1-14 (2012) · Zbl 1262.30055
[25] Wang, LP; Qiao, YY; Yang, HJ., Some properties of the Teodorescu operator related to the α-Dirac operator, Appl Anal, 93, 11, 2413-2425 (2014) · Zbl 1303.30047
[26] Qiao, YY; Wang, LP; Yang, GM., A kind of boundary value problem for inhomogeneous partial differential system, J Inequal Appl, 180, 1-13 (2016) · Zbl 1347.35072
[27] Yang, P.; Wang, LP; Gao, L., Some properties and applications of the Teodorescu operator associated to the Helmholtz equation, J Inequal Appl, 264, 1-19 (2017) · Zbl 1379.30038
[28] Karlovich, Yu. I., The Haseman boundary value problem with slowly oscillating coefficients and shifts, Adv Appl, 259, 463-500 (2017) · Zbl 1364.45004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.