×

Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients. (English) Zbl 1458.42009

Summary: By using the subspace of functions from homogeneous spaces with integrals decreasing at infinity we define new classes of functions almost periodic at infinity. We obtain spectral criteria for a function to be almost periodic at infinity and asymptotically almost periodic (with respect to the chosen subspace). These results are used for deriving criteria for almost periodicity at infinity of bounded solutions to differential equations with unbounded operator coefficients. In addition, for the new class of asymptotically finite-dimensional operator semigroups we prove the almost periodicity at infinity of their orbits.

MSC:

42A75 Classical almost periodic functions, mean periodic functions
43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions

References:

[1] W. Arendt, C. J. K. Batty, “Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line”, Bull. London Math. Soc., 31 (1999), 291-304 · Zbl 0952.34048 · doi:10.1112/S0024609398005657
[2] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2011 · Zbl 1226.34002
[3] B. Basit, “Harmonic analysis and asymptotic behavior of solutions to the abstract Cauchy problem”, Semigroup Forum, 54:1 (1994), 58-74 · Zbl 0868.47027 · doi:10.1007/BF02676587
[4] A. G. Baskakov, Some problems of the theory of vector almost periodic functions, Diss. Kand. Fiz. Mat. Nauk, Voronezh, 1973 (in Russian)
[5] Math. Notes, 24:2 (1978), 606-612 · Zbl 0423.34096 · doi:10.1007/BF01105312
[6] Math. of the USSR Sbornik, 52:1 (1985), 63-90 · Zbl 0569.43004 · doi:10.1070/SM1985v052n01ABEH002878
[7] J. Math. Sci., 137:4 (2006), 4885-5036 · Zbl 1098.47005 · doi:10.1007/s10958-006-0286-4
[8] A. G. Baskakov, Harmonic analysis in Banach modules and the spectral theory of linear operators, Publishing house of Voronezh State University, Voronezh, 2016 (in Russian)
[9] Russian Math. Surveys, 68:1 (2013), 69-116 · Zbl 1279.34069 · doi:10.1070/RM2013v068n01ABEH004822
[10] Math. Notes, 97:2 (2015), 164-178 · Zbl 1328.47043 · doi:10.1134/S0001434615010198
[11] Math. Notes, 92:5 (2012), 587-605 · Zbl 1264.43008 · doi:10.1134/S0001434612110016
[12] Russian Math. (Iz. VUZ), 58:7 (2014), 1-10 · Zbl 1310.47059 · doi:10.3103/S1066369X14070019
[13] Izv. Math., 69:3 (2005), 439-486 · Zbl 1106.47003 · doi:10.1070/IM2005v069n03ABEH000535
[14] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterranean Journal of Mathematics, 13:5 (2016), 2443-2462 · Zbl 1422.47050 · doi:10.1007/s00009-015-0633-0
[15] A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9-29 · Zbl 1463.34059
[16] Sib. Math. J., 59:2 (2018), 231-242 · Zbl 1398.34086 · doi:10.1134/S0037446618020052
[17] S. Bochner, J. V. Neumann, “Almost periodic functions in groups. II”, Trans. Amer. Math. Soc., 37:1 (1935), 21-50 · JFM 61.0470.06
[18] Y. Domar, “Harmonic analysis based on certain commutative Banach algebras”, Acta Math., 96 (1956), 1-66 · Zbl 0071.11302 · doi:10.1007/BF02392357
[19] E. Yu. Emel’yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, Birkhäuser Verlag, Basel, 2007 · Zbl 1117.47001
[20] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. II, Springer-Verlag, New York, 1994 · Zbl 0837.43002
[21] B. M. Levitan, V. V. Zhikov, Almost-periodic functions and differential equations, Publishing House of Moscow State University, M., 1978 (in Russian) · Zbl 0414.43008
[22] Yu. Lyubich, Q. Ph. Vu, “Asymptotic stability of linear differential equations in Banach spaces”, Studia Math., 88:1 (1988), 37-42 · Zbl 0639.34050 · doi:10.4064/sm-88-1-37-42
[23] H. Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968 · Zbl 0165.15601
[24] S. L. Sobolev, “On almost periodicity for solutions of a wave equation. I-III”, Dokl. Akad. Nauk SSSR, 48:8 (1945), 570-573
[25] Sib. Math. J., 52:6 (2011), 1104-1107 · Zbl 1242.47035 · doi:10.1134/S0037446611060152
[26] V. E. Strukov, I. I. Strukova, “About slowly varying and periodic at infinity functions from homogeneous spaces and harmonic distributions”, News of Voronezh State University, ser. Fizika. Matematika, 4 (2018), 195-205 (in Russian) · Zbl 1479.46051
[27] Sib. Math. J., 57:1 (2016), 145-154 · Zbl 1344.42005 · doi:10.1134/S0037446616010146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.