×

Fuzzy adaptive finite-time consensus tracking control for nonlinear multi-agent systems. (English) Zbl 1483.93354

Summary: This paper focuses on the finite-time consensus tracking control problem of nonlinear multi-agent systems. Dynamics of each agent has completely unknown nonlinear terms that cannot be directly used for control design. Therefore, fuzzy logic systems are employed to approximate these nonlinear functions. Furthermore, a finite-time fuzzy adaptive consensus tracking protocol is proposed for a class of nonlinear multi-agent systems by using integral-type Lyapunov functions. The developed adaptive backstepping design scheme successfully avoids the singularity problem of the derivatives of virtual control signals. It is shown that with the presented control protocol, the consensus tracking errors converge to a small neighbourhood of the origin in finite time, and the other signals of multi-agent systems are bounded. Finally, a numerical example is used to verify the effectiveness of the proposed control protocol.

MSC:

93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
93D40 Finite-time stability
93D50 Consensus
93A16 Multi-agent systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Bai, W. W.; Li, T. S.; Tong, S. C., NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems, IEEE Transactions on Cybernetics, 50, 11, 4573-4584 (2020) · doi:10.1109/TCYB.2020.2963849
[2] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43, 5, 678-682 (1998) · Zbl 0925.93821 · doi:10.1109/9.668834
[3] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[4] Bidram, A.; Davoudi, A.; Lewis, F. L.; Qu, Z. H., Secondary control of microgrids based on distributed cooperative control of multi-agent systems, IET Generation. Transmission and Distribution, 7, 8, 822-831 (2013) · doi:10.1049/iet-gtd.2012.0576.
[5] Ding, S. H.; Li, S. H.; Li, Q., Stability analysis for a second-order continuous finite-time control system subject to a disturbance, Journal of Control Theory and Applications, 7, 3, 271-276 (2009) · doi:10.1007/s11768-009-8015-4
[6] Du, H. B.; Wen, G. H.; Cheng, Y. Y.; He, Y. G.; Jia, R., Distributed finite-time cooperative control of multiple high-order nonholonomic mobile robots, IEEE Transactions on Neural Networks and Learning Systems, 28, 12, 2998-3006 (2017) · doi:10.1109/TNNLS.2016.2610140
[7] Han, S. I., Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems, IET Control Theory and Applications, 12, 2, 282-290 (2018) · doi:10.1049/iet-cta.2017.0351
[8] Hardy, G.; Littlewood, J.; Polya, G., Inequalities (1952), Cambridge University Press · Zbl 0047.05302
[9] He, X. Y. (2015). Distributed finite-time consensus tracking control for second-order nonlinear multi-agent systems. Proceedings of the 34th Chinese control conference, July, Hangzhou, China (pp. 681-686). doi:10.1109/ChiCC.2015.7259717
[10] He, W.; Cao, J., Consensus control for high-order multi-agent systems, IET Control Theory and Applications, 5, 1, 231-238 (2011) · doi:10.1049/iet-cta.2009.0191
[11] Hong, Y.; Huang, J. Y.; Xu, S., On an output feedback finite-time stabilization problem, IEEE Transactions on Automatic Control, 46, 2, 305-309 (2001) · Zbl 0992.93075 · doi:10.1109/9.905699
[12] Hua, C. C.; You, X. X.; Guan, P., Leader-following consensus for a class of high-order nonlinear multi-agent systems, Automatica, 73, 138-144 (2016) · Zbl 1372.93017 · doi:10.1016/j.automatica.2016.06.025
[13] Huang, J. S.; Wen, C. Y.; Wang, W.; Song, Y.-D., Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica, 51, 292-301 (2015) · Zbl 1309.93011 · doi:10.1016/j.automatica.2014.10.093
[14] Huang, J. S.; Wen, C. Y.; Wang, W.; Song, Y.-D., Design of adaptive finite-time controllers for nonlinear uncertain systems based on given transient specifications, Automatica, 69, 395-404 (2016) · Zbl 1338.93186 · doi:10.1016/j.automatica.2015.08.013
[15] Li, S. H.; Du, H. B.; Lin, X. Z., Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 47, 8, 1706-1712 (2011) · Zbl 1226.93014 · doi:10.1016/j.automatica.2011.02.045
[16] Li, Z. X.; Ji, H. B., Finite-time consensus and tracking control of a class of nonlinear multiagent systems, IEEE Transactions on Automatic Control, 63, 12, 4413-4420 (2018) · Zbl 1423.93024 · doi:10.1109/TAC.2018.2845677.
[17] Li, Y. M.; Li, K. W.; Tong, S. C., Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems, IEEE Transactions on Fuzzy Systems, 27, 1, 96-110 (2019) · doi:10.1109/TFUZZ.2018.2868898
[18] Li, Y. M.; Li, K. W.; Tong, S. C., Adaptive neural network finite-time control for multi-input and multi-output nonlinear systems with positive powers of odd rational numbers, IEEE Transactions on Neural Networks and Learning Systems, 31, 7, 2532-2543 (2020) · doi:10.1109/TNNLS.2019.2933409
[19] Liu, W.; Ma, Q.; Wang, Q.; Feng, H., Finite-time consensus control of heterogeneous nonlinear MASs with uncertainties bounded by positive functions, Neurocomputing, 330, 29-38 (2019) · doi:10.1016/j.neucom.2018.10.048
[20] Polycarpou, M. M.; Ioannou, P. A., A robust adaptive nonlinear control design, Automatica, 32, 3, 423-427 (1996) · Zbl 0847.93031 · doi:10.1016/0005-1098(95)00147-6.
[21] Qian, C. J.; Lin, W., Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization, System and Control Letters, 42, 3, 185-200 (2001) · Zbl 0974.93050 · doi:10.1016/S0167-6911(00)00089-X
[22] Schenato, L.; Fiorentin, F., Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks, Automatica, 47, 9, 1878-1886 (2011) · Zbl 1223.68022 · doi:10.1016/j.automatica.2011.06.012.
[23] Seo, S.; Shim, H.; Seo, J. H., Finite-time stabilizing dynamic control of uncertain multi-input linear systems, IMA Journal of Mathematical Control and Information, 28, 4, 525-537 (2011) · Zbl 1245.93121 · doi:10.1093/imamci/dnr017
[24] Shi, S.; Feng, H.; Liu, W.; Zhuang, G., Finite-time consensus of high-order heterogeneous multi-agent systems with mismatched disturbances and nonlinear dynamics, Nonlinear Dynamics, 96, 2, 1317-1333 (2019) · Zbl 1437.93122 · doi:10.1007/s11071-019-04856-3
[25] Tong, S. C.; Min, X.; Li, Y. M., Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Transactions on Cybernetics, 50, 9, 3903-3913 (2020) · doi:10.1109/TCYB.2020.2977175
[26] Wang, L. X.; Mendel, J. M., Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Transactions on Neural Networks, 3, 5, 807-814 (1992) · doi:10.1109/72.159070
[27] Wang, Y. J.; Song, Y. D.; Krstic, M.; Wen, C. Y., Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures, Automatica, 63, 374-383 (2016) · Zbl 1329.93016 · doi:10.1016/j.automatica.2015.10.049
[28] Wang, Y. J.; Song, Y. D.; Krstic, M.; Wen, C. Y., Adaptive finite time coordinated consensus for high-order multi-agent systems: Adjustable fraction power feedback approach, Information Sciences, 372, C, 392-406 (2016) · Zbl 1428.68308 · doi:10.1016/j.ins.2016.08.054
[29] Wang, W.; Wen, C. Y.; Huang, J. S., Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances, Automatica, 77, 133-142 (2017) · Zbl 1355.93022 · doi:10.1016/j.automatica.2016.11.019
[30] Wang, L.; Xiao, F., Finite-time consensus problems for networks of dynamic agents, IEEE Transactions on Automatic Control, 55, 4, 950-955 (2010) · Zbl 1368.93391 · doi:10.1109/TAC.2010.2041610
[31] Wang, H.; Yu, W.; Ding, Z.; Yu, X., Tracking consensus of general nonlinear multi-agent systems with external disturbances under directed networks, IEEE Transactions on Automatic Control, 64, 11, 4772-4779 (2019) · Zbl 1482.93025 · doi:10.1109/TAC.2019.2905512
[32] Yu, W.; Chen, G.; Cao, M.; Kurths, J., Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40, 3, 881-891 (2010) · doi:10.1109/TSMCB.2009.2031624
[33] Zhang, H. W.; Lewis, F. L.; Qu, Z., Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs, IEEE Transactions on Industrial Electronics, 59, 7, 3026-3041 (2012) · doi:10.1109/TIE.2011.2160140
[34] Zhang, H. G.; Liu, Y.; Dai, J.; Wang, Y. C., Command filter finite-time control for a class of uncertain nonlinear systems with hysteresis, IEEE Transactions on Fuzzy Systems, 1-1 (2020) · doi:10.1109/TFUZZ.2020.3003499
[35] Zhang, H. G.; Liu, Y.; Wang, Y. C., Observer-based finite-time adaptive fuzzy control for nontriangular nonlinear systems with full-state constraints, IEEE Transactions on Cybernetics, 1-11 (2020) · doi:10.1109/TCYB.2020.2984791
[36] Zhang, J.; Zhang, H.; Feng, T., Distributed optimal consensus control for nonlinear multiagent system with unknown dynamic, IEEE Transactions on Neural Networks and Learning Systems, 29, 8, 3339-3348 (2018) · doi:10.1109/TNNLS.2017.2728622
[37] Zhao, L.; Jia, Y. M., Finite-time consensus for second-order stochastic multi-agent systems with nonlinear dynamics, Applied Mathematics and Computation, 270, 278-290 (2015) · Zbl 1410.93143 · doi:10.1016/j.amc.2015.08.048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.