×

Studying novel 1D potential via the AIM. (English) Zbl 1487.81090

Summary: In this work, we would like to apply the asymptotic iteration method (AIM) to a newly proposed Morse-like deformed potential introduced recently by I. A. Assi et al. [J. Math. Phys. 62, No. 9, 093501, 10 p. (2021; Zbl 1500.81067)] This interesting potential can support bound states and/or resonances. However, in this work, we are only interested in bound states. We considered several choices of the potential parameters and obtained the associated spectrum. Finally, we study the small deformation limit at which this finite spectrum system will transition to infinite spectrum size.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V45 Atomic physics
81U05 \(2\)-body potential quantum scattering theory
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
47J26 Fixed-point iterations
47A10 Spectrum, resolvent

Citations:

Zbl 1500.81067
Full Text: DOI

References:

[1] Cooper, F., Khare, A. and Sukhatme, U. P., Supersymmetry in Quantum Mechanics (World Scientific, 2001). · Zbl 0988.81001
[2] Fernández, F. M., Ma, Q. and Tipping, R. H., Phys. Rev. A40, 6149 (1989).
[3] Fernández, F. M., Ma, Q. and Tipping, R. H., Phys. Rev. A39, 1605 (1989).
[4] Fernández, F. M., Frydman, G. I. and Castro, E. A., J. Phys. A: Math. General22, 641 (1989). · Zbl 0677.34025
[5] Sukhatme, U. and Imbo, T., Phys. Rev. D28, 418 (1983).
[6] Nikiforov, A. F. and Uvarov, V. B., Special Functions of Mathematical Physics, Vol. 205 (Birkhäuser, 1988). · Zbl 0624.33001
[7] Alhaidari, A. D., J. Math. Phys.58, 072104 (2017). · Zbl 1370.81052
[8] Alhaidari, A. D. and Bahlouli, H., Phys. Scripta94, 125206 (2019).
[9] Alhaidari, A. D. and Bahlouli, H. and Assi, I. A., Phys. Lett. A380, 1577 (2016). · Zbl 1364.81106
[10] Assi, I. A., Alhaidari, A. D. and Bahlouli, H., Commun. Theor. Phys.69, 241 (2018). · Zbl 1391.81071
[11] Alhaidari, A. D., Ann. Phys.317, 152 (2005). · Zbl 1077.81037
[12] Bahlouli, H. and Alhaidari, A. D., Phys. Scripta81, 025008 (2010). · Zbl 1190.81063
[13] Ciftci, H., Hall, R. L. and Saad, N., J. Phys. A: Math. General36, 11807 (2003). · Zbl 1070.34113
[14] Sous, A. J. and Alhaidari, A. D., J. Appl. Math. Phys.4, 79 (2016).
[15] Sous, A. J., J. Appl. Math. Phys.3, 1406 (2015).
[16] Assi, I. A., Sous, A. J. and Ikot, A. N., Eur. Phys. J. Plus132, 525 (2017).
[17] Assi, I. A. and Sous, A. J., Eur. Phys. J. Plus133, 175 (2018).
[18] Assi, I. A., Sous, A. J. and Bahlouli, H., Mod. Phys. Lett. A33, 1850128 (2018). · Zbl 1391.81072
[19] Sous, A. J., Pramana93, 22 (2019).
[20] Assi, I. A., Sous, A. J. and Bahlouli, H., Eur. Phys. J. Plus135, 1 (2020).
[21] Assi, I. A., Sous, A. J. and Bahlouli, H., Eur. Phys. J. Plus136, 1 (2021).
[22] Alhaidari, A. D., Theor. Math. Phys.206, 84 (2020).
[23] I. A. Assi, A. D. Alhaidari and H. Bahlouli, arXiv:2101.09703.
[24] I. A. Assi, private communication (2021).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.