×

Preface. (English) Zbl 1378.00112

From the text: Since 2000 there has been much progress in the modeling and simulation of soft tissue mechanics and it is now considered an appropriate time to produce a further special issue, but now focusing on broader aspects of soft tissue mechanics. We have therefore brought together a collection of 12 papers from selected leading experts in the field to provide particular reference to multiscale modeling and mechanobiology for a range of different soft tissues, such as arteries, the eye, the brain, and the heart.

MSC:

00B15 Collections of articles of miscellaneous specific interest
74-06 Proceedings, conferences, collections, etc. pertaining to mechanics of deformable solids
92-06 Proceedings, conferences, collections, etc. pertaining to biology
92C10 Biomechanics
Full Text: DOI

References:

[1] Lanir, Y.: Multi-scale structural modeling of soft tissues: mechanics and mechanobiology. J. Elast. (2016). doi:10.1007/s10659-016-9607-0 · Zbl 1374.74097 · doi:10.1007/s10659-016-9607-0
[2] Holzapfel, G.A., Ogden, R.W.: On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons. J. Elast. (2016). doi:10.1007/s10659-016-9605-2 · Zbl 1373.74020 · doi:10.1007/s10659-016-9605-2
[3] Nims, R.J., Ateshian, G.A.: Reactive constrained mixtures for modeling the solid matrix of biological tissues. J. Elast. (2017). doi:10.1007/s10659-017-9630-9 · Zbl 1373.74075 · doi:10.1007/s10659-017-9630-9
[4] Ambrosi, D., Pezzuto, S., Riccobelli, D., Stylianopoulos, T., Ciarletta, P.: Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth. J. Elast. (2017). doi:10.1007/s10659-016-9619-9 · Zbl 1373.74033 · doi:10.1007/s10659-016-9619-9
[5] Rausch, M.K., Humphrey, J.D.: A computational model of the biochemomechanics of an evolving occlusive thrombus. J. Elast. (2017). doi:10.1007/s10659-017-9626-5 · Zbl 1373.74041 · doi:10.1007/s10659-017-9626-5
[6] Pinsky, P.M., Cheng, X.: A constitutive model for swelling pressure and volumetric behavior of highly-hydrated connective tissue. J. Elast. (2017). doi:10.1007/s10659-016-9616-z · Zbl 1373.74021 · doi:10.1007/s10659-016-9616-z
[7] Grytz, R., El Hamdaoui, M.: Multi-scale modeling of vision-guided remodeling and age-dependent growth of the tree shrew sclera during eye development and lens-induced myopia. J. Elast. (2016). doi:10.1007/s10659-016-9603-4 · Zbl 1373.74074 · doi:10.1007/s10659-016-9603-4
[8] Weickenmeier, J., Saez, P., Butler, C.A.M., Young, P.G., Goriely, A., Kuhl, E.: Bulging brains. J. Elast. (2016). doi:10.1007/s10659-016-9606-1 · Zbl 1373.74076 · doi:10.1007/s10659-016-9606-1
[9] Ben Amar, M., Bordner, A.: Mimicking cortex convolutions through the wrinkling of growing soft bilayers. J. Elast. (2017). doi:10.1007/s10659-017-9622-9 · Zbl 1373.35011 · doi:10.1007/s10659-017-9622-9
[10] Lang, G., Waters, S., Vella, D., Goriely, A.: Axonal buckling following stretch injury. J. Elast. (2017). doi:10.1007/s10659-016-9604-3 · Zbl 1375.92009 · doi:10.1007/s10659-016-9604-3
[11] Witzenburg, C.M., Holmes, J.W.: A comparison of phenomenologic growth laws for myocardial hypertrophy. J. Elast. (2017). doi:10.1007/s10659-017-9631-8 · Zbl 1373.74026 · doi:10.1007/s10659-017-9631-8
[12] Wang, V.Y., Hussan, J.R., Yousefi, H., Bradley, C.P., Hunter, P.J., Nash, M.P.: Modelling cardiac tissue growth and remodelling. J. Elast. (2017). doi:10.1007/s10659-017-9640-7 · Zbl 1373.78423 · doi:10.1007/s10659-017-9640-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.