×

Numerical simulation of the whispering gallery modes in prolate spheroids. (English) Zbl 1344.35019

Summary: In this paper, we discuss the progress in the numerical simulation of the so-called ‘whispering gallery’ modes (WGMs) occurring inside a prolate spheroidal cavity. These modes are mainly concentrated in a narrow domain along the equatorial line of a spheroid and they are famous because of their extremely high quality factor. The scalar Helmholtz equation provides a sufficient accuracy for WGM simulation and (in a contrary to its vector version) is separable in spheroidal coordinates. However, the numerical simulation of ‘whispering gallery’ phenomena is not straightforward. The separation of variables yields two spheroidal wave ordinary differential equations (ODEs), first only depending on the angular, second on the radial coordinate. Though separated, these equations remain coupled through the separation constant and the eigenfrequency, so that together with the boundary conditions they form a singular self-adjoint two-parameter Sturm-Liouville problem.
We discuss an efficient and reliable technique for the numerical solution of this problem which enables calculation of highly localized WGMs inside a spheroid. The presented approach is also applicable to other separable geometries. We illustrate the performance of the method by means of numerical experiments.

MSC:

35J15 Second-order elliptic equations
34B24 Sturm-Liouville theory
65N06 Finite difference methods for boundary value problems involving PDEs

Software:

HOFiD_UP
Full Text: DOI

References:

[1] Ilchenko, V. S.; Matsko, A. B., Optical resonators with whispering gallery nodes — part II: applications, IEEE J. Sel. Top. Quantum Electron., 12, 15-32 (2006)
[2] Matsko, A. B.; Ilchenko, V. S., Optical resonators with whispering gallery nodes — part I: basics, IEEE J. Sel. Top. Quantum Electron., 12, 3-14 (2006)
[3] Matsko, A. B.; Savchenkov, A. A.; Strekalov, D.; Ilchenko, V. S.; Maleki, L., Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics, IPN PR-Nasa, 42, 162, 1-51 (2005)
[4] Gorodetsky, M. L.; Ilchenko, V. S., High-\(Q\) optical whispering gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers, Opt. Commun., 113, 133-143 (1994)
[6] Oxborrow, M., Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators, IEEE Trans. Microw. Theory Tech., 55, 1209-1218 (2007)
[7] Gorodetsky, M. L.; Fomin, A. E., Geometrical theory of whispering-gallery modes, IEEE J. Sel. Top. Quantum Electron., 12, 33-39 (2006)
[8] Wainstein, L. A., Open Resonators and Open Waveguides (1966), Soviet Radio Press: Soviet Radio Press Moscow
[9] Sleeman, B. D., (Multiparameter Spectral Theory in Hilbert Space. Multiparameter Spectral Theory in Hilbert Space, Research Notes in Mathematics, vol. 22 (1978), Pitman: Pitman London) · Zbl 0396.47005
[10] Sleeman, B. D., Multiparameter spectral theory and separation of variables, J. Phys. A, 41, 1-20 (2008) · Zbl 1141.34008
[11] Volkmer, H., Multiparameter Eigenvalue Problems and Expansion Theorems, (Lecture Notes in Mathematics, vol. 1356 (1988), Springer-Verlag: Springer-Verlag Berlin, New York) · Zbl 0659.47024
[12] Abramov, A. A.; Dyshko, A. L.; Konyukhova, N. B., Computation of prolate Spheroidal functions by solving the corresponding differential equations, USSR Comput. Math. Math. Phys., 24, 1-11 (1984) · Zbl 0562.65012
[13] Levitina, T. V.; Brändas, E. J., Computational techniques for prolate spheroidal wave functions in signal processing, J. Comput. Methods Sci. Eng., 1, 287-313 (2001) · Zbl 1012.65020
[14] Abramov, A. A.; Dyshko, A. L.; Konyukhova, N. B.; Levitina, T. V., Evaluation of Lamé angular wave functions by solving of auxiliary differential equations, Comput. Math. Math. Phys., 29, 119-131 (1989) · Zbl 0708.65021
[15] Fröman, N.; Fröman, P. O., JWBK-Approximation (1965), North-Holland · Zbl 0129.41907
[17] Fedorjuk, M. V., Asymptotic Analysis. Linear Ordinary Differential Equations (1993), Springer-Verlag · Zbl 0782.34001
[18] Levitina, T. V., The conditions of applicability of an algorithm for solving two-parameter self-adjoint boundary-value problems, Zh. Vychisl. Mat. Mat. Fiz., 31, 5, 689-697 (1991) · Zbl 0751.65054
[19] Levitina, T. V., A numerical solution to some three-parameter spectral problems, Zh. Vychisl. Mat. Mat. Fiz., 39, 11, 1787-1801 (1999) · Zbl 0977.65099
[20] Abramov, A. A.; Ulyanova, V. I., A method for solving selfadjoint multiparameter spectral problems for weakly coupled sets of ordinary differential equations, Zh. Vychisl. Mat. Mat. Fiz., 37, 5, 566-571 (1997) · Zbl 0945.34005
[21] Spigler, R.; Vianello, M., A survey on the Liouville-Green (WKB) approximation for linear difference equations of the second order, (Saber; Elaydi, N.; Györi, I.; Ladas, G., Advances in Difference Equations (1998), Taylor & Francis: Taylor & Francis Veszprem, Hungary), 567-577, August 7-11, 1995 · Zbl 0892.39018
[22] Amodio, P.; Levitina, T.; Settanni, G.; Weinmüller, E. B., On the calculation of the finite Hankel transform eigenfunctions, J. Appl. Math. Comput., 43, 151-173 (2013) · Zbl 1296.65188
[23] Amodio, P.; Settanni, G., A matrix method for the solution of Sturm-Liouville problems, JNAIAM J. Numer. Anal. Ind. Appl. Math., 6, 1-13 (2011) · Zbl 1432.65107
[24] Amodio, P.; Settanni, G., A stepsize variation strategy for the solution of regular Sturm-Liouville problems, Numer. Anal. Appl. Math., AIP Conf. Proc., 1389, 1335-1338 (2011)
[25] Amodio, P.; Settanni, G., A finite differences MATLAB code for the numerical solution of second order singular perturbation problems, J. Comput. Appl. Math., 236, 3869-3879 (2012) · Zbl 1246.65127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.