×

Stochastic algorithms for self-consistent calculations of electronic structures. (English) Zbl 1537.62034

Summary: The convergence property of a stochastic algorithm for the self-consistent field (SCF) calculations of electron structures is studied. The algorithm is formulated by rewriting the electronic charges as a trace/diagonal of a matrix function, which is subsequently expressed as a statistical average. The function is further approximated by using a Krylov subspace approximation. As a result, each SCF iteration only samples one random vector without having to compute all the orbitals. We consider the common practice of SCF iterations with damping and mixing. We prove that the iterates from a general linear mixing scheme converge in a probabilistic sense when the stochastic error has a second finite moment.

MSC:

62L20 Stochastic approximation
65F10 Iterative numerical methods for linear systems
65H10 Numerical computation of solutions to systems of equations

Software:

OCTOPUS

References:

[1] Alber, Y. I., Stochastic approximation method for fixed point problems, Appl. Math., 2123\ndash 2132 pp. (2012)
[2] Avron, H., Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix, J. ACM, 1\ndash 34 pp. (2011) · Zbl 1327.68331
[3] Banerjee, A. S., Periodic pulay method for robust and efficient convergence acceleration of self-consistent field iterations, Chem.Phys.Lett., 31\ndash 35 pp. (2016)
[4] Beck, T. L., Real-space mesh techniques in density-functional theory, Rev.Mod.Phys., 1041\ndash 1080 pp. (2000)
[5] Bekas, C., An estimator for the diagonal of a matrix, Appl. Numer. Math., 1214-1229 (2007) · Zbl 1123.65026 · doi:10.1016/j.apnum.2007.01.003
[6] Bottou, L., The Tradeoffs of Large Scale Learning, Advances in Neural Information Processing Systems (2007)
[7] Bottou, L\'{e}on, Optimization methods for large-scale machine learning, SIAM Rev., 223-311 (2018) · Zbl 1397.65085 · doi:10.1137/16M1080173
[8] Bowler, D. R., An efficient and robust technique for achieving self consistency in electronic structure calculations, Chem.Phys.Lett., 473\ndash 476 pp. (2000)
[9] Bowler, D. R., Recent progress in linear scaling ab initio electronic structure techniques, J. Phys., 2781 pp. (2002)
[10] Canc{\`e}s, E., Self-consistent field algorithms for {Kohn-Sham} models with fractional occupation numbers, J. Chem. Phys., 10616\ndash 10622 pp. (2001)
[11] Canc\`es, \'{E}ric, Convergence analysis of direct minimization and self-consistent iterations, SIAM J. Matrix Anal. Appl., 243-274 (2021) · Zbl 1467.65054 · doi:10.1137/20M1332864
[12] Canc{\`e}s, E., Can we outperform the {DIIS} approach for electronic structure calculations?, Int.J. Quantum Chem., 82\ndash 90 pp. (2000)
[13] Canc\`es, Eric, On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN Math. Model. Numer. Anal., 749-774 (2000) · Zbl 1090.65548 · doi:10.1051/m2an:2000102
[14] Chung, K. L., On a stochastic approximation method, Ann. Math. Statistics, 463-483 (1954) · Zbl 0059.13203 · doi:10.1214/aoms/1177728716
[15] Cytter, Y., Stochastic density functional theory at finite temperatures, Phys.Rev.B, 115207 pp. (2018)
[16] Defazio, A., Saga: A fast incremental gradient method with support for non-strongly convex composite objectives, arXiv preprint \arXiv{1407.0202} (2014)
[17] Diele, Fasma, Error estimates for polynomial Krylov approximations to matrix functions, SIAM J. Matrix Anal. Appl., 1546-1565 (2008/09) · Zbl 1176.65057 · doi:10.1137/070688924
[18] Eiermann, Michael, A restarted Krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal., 2481-2504 (2006) · Zbl 1129.65019 · doi:10.1137/050633846
[19] Elstner, M., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B, 7260 pp. (1998)
[20] Fang, Haw-ren, Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra Appl., 197-221 (2009) · Zbl 1224.65134 · doi:10.1002/nla.617
[21] Garc\'{\i }a-Cervera, Carlos J., A sub-linear scaling algorithm for computing the electronic structure of materials, Commun. Math. Sci., 999-1026 (2007) · Zbl 1133.35429
[22] Goedecker, S., Linear scaling electronic structure methods, Rev. Mod. Phys., 1085 pp. (1999)
[23] Golse, F., The random batch method for{ \( N \)-Body} quantum dynamics, arXiv preprint \arXiv{1912.07424} (2019)
[24] Hamilton, T. P., Direct inversion in the iterative subspace {(DIIS)} optimization of open-shell, excited-state, and small multiconfiguration scf wave functions, J.Chem. Phys., 5728\ndash 5734 pp. (1986)
[25] Hermann, J., Deep-neural-network solution of the electronic {Schr{\"o}dinger} equation, Nat.Chem., 891\ndash 897 pp. (2020)
[26] Hohenberg, P., Inhomogeneous electron gas, Phys. Rev. (2), B864-B871 (1964)
[27] Jin, Shi, Random batch algorithms for quantum Monte Carlo simulations, Commun. Comput. Phys., 1907-1936 (2020) · Zbl 1473.65008 · doi:10.4208/cicp.oa-2020-0168
[28] Johnson, D. D., Modified {Broyden}’s method for accelerating convergence in self-consistent calculations, Phys.Rev.B, 12807 pp. (1988)
[29] Johnson, R., Accelerating Stochastic Gradient Descent Using Predictive Variance Reduction, Advances in Neural Information Processing Systems (2013)
[30] Kincaid, D., Numerical analysis: mathematics of scientific computing (2009), American Mathematical Soc. · Zbl 1222.65001
[31] Kohn, W., Self-consistent equations including exchange and correlation effects, Phys. Rev. (2), A1133-A1138 (1965)
[32] Kresse, G., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys.Rev.B, 11169 pp. (1996)
[33] Kronik, L., {PARSEC}–the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structures, Phys. Status Solidi (b), 1063\ndash 1079 pp. (2006)
[34] Kushner, Harold J., On the stability of stochastic dynamical systems, Proc. Nat. Acad. Sci. U.S.A., 8-12 (1965) · Zbl 0143.19005 · doi:10.1073/pnas.53.1.8
[35] Kushner, Harold J., Stochastic Stability and Control, Mathematics in Science and Engineering, Vol. 33, xiv+161 pp. (1967), Academic Press, New York-London · Zbl 0244.93065
[36] Kushner, Harold J., Stochastic Approximation and Recursive Algorithms and Applications, Applications of Mathematics (New York), xxii+474 pp. (2003), Springer-Verlag, New York · Zbl 1026.62084
[37] Lefebvre, M., Applied stochastic processes (2007), Springer Science & Business Media · Zbl 1127.60001
[38] Lin, L., Approximating spectral densities of large matrices, SIAM Rev., 34\ndash 65 pp. (2016) · Zbl 1338.15026
[39] Lin, Lin, Elliptic preconditioner for accelerating the self-consistent field iteration in Kohn-Sham density functional theory, SIAM J. Sci. Comput., S277-S298 (2013) · Zbl 1284.82009 · doi:10.1137/120880604
[40] Marques, M. A., octopus: a first-principles tool for excited electron-ion dynamics, Comp.Phys.Commun., 60\ndash 78 pp. (2003)
[41] Martin, R. M., {Electronic Structure: Basic Theory and Practical Methods} (2011), {Cambridge University Press}
[42] Martinsson, Per-Gunnar, Randomized numerical linear algebra: foundations and algorithms, Acta Numer., 403-572 (2020) · Zbl 07674565 · doi:10.1017/s0962492920000021
[43] Marx, D., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (2009), Cambridge University Press
[44] Meyer, Carl, Matrix Analysis and Applied Linear Algebra, xii+718 pp. (2000), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 0962.15001 · doi:10.1137/1.9780898719512
[45] Morales-Silva, M. A., Frontiers of Stochastic Electronic Structure Calculations (2021), AIP Publishing LLC
[46] Nguyen, L. M., Sarah: A novel method for machine learning problems using stochastic recursive gradient, International conference on machine learning, 2613\ndash 2621 pp. (2017)
[47] Norris, J. R., Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, xvi+237 pp. (1998), Cambridge University Press, Cambridge · Zbl 0938.60058
[48] Parr, R. G., Density-Functional Theory of Atoms and Molecules (1995), Oxford University Press
[49] Payne, M. C., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev.Mod.Phys., 1045 pp. (1992)
[50] Reddi, S. J., Stochastic Variance Reduction for Nonconvex Optimization, International Conference on Machine Learning, 314\ndash 323 pp. (2016)
[51] Resnick, Sidney I., A Probability Path, Modern Birkh\"{a}user Classics, xiv+453 pp. (2014), Birkh\"{a}user/Springer, New York · Zbl 1280.60001 · doi:10.1007/978-0-8176-8409-9
[52] Reynolds, P. J., Fixed-node quantum {Monte Carlo} for molecules, J. Chem.Phys., 5593\ndash 5603 pp. (1982)
[53] Robbins, Herbert, A stochastic approximation method, Ann. Math. Statistics, 400-407 (1951) · Zbl 0054.05901 · doi:10.1214/aoms/1177729586
[54] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 209-228 (1992) · Zbl 0749.65030 · doi:10.1137/0729014
[55] Soler, J. M., The {SIESTA} method for ab initio order-{N} materials simulation, J. Phys., 2745 pp. (2002)
[56] Suryanarayana, Phanish, Non-periodic finite-element formulation of Kohn-Sham density functional theory, J. Mech. Phys. Solids, 256-280 (2010) · Zbl 1193.81006 · doi:10.1016/j.jmps.2009.10.002
[57] Thicke, Kyle, Accelerating the Computation of Density Functional Theory’s Correlation Energy under Random Phase Approximations, 124 pp. (2019), ProQuest LLC, Ann Arbor, MI
[58] Toth, Alex, Local improvement results for Anderson acceleration with inaccurate function evaluations, SIAM J. Sci. Comput., S47-S65 (2017) · Zbl 1422.65079 · doi:10.1137/16M1080677
[59] Toth, Alex, Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal., 805-819 (2015) · Zbl 1312.65083 · doi:10.1137/130919398
[60] Trefethen, L. N., Approximation theory and approximation practice, extended edition (2019), SIAM
[61] Tuckerman, M. E., Ab initio molecular dynamics: basic concepts, current trends and novel applications, J. Phys., R1297 pp. (2002)
[62] E, Weinan, Electronic structure of smoothly deformed crystals: Cauchy-Born rule for the nonlinear tight-binding model, Comm. Pure Appl. Math., 1432-1468 (2010) · Zbl 1277.81117 · doi:10.1002/cpa.20330
[63] Williams, David, Probability with Martingales, Cambridge Mathematical Textbooks, xvi+251 pp. (1991), Cambridge University Press, Cambridge · Zbl 0722.60001 · doi:10.1017/CBO9780511813658
[64] Wolfowitz, J., On the stochastic approximation method of Robbins and Monro, Ann. Math. Statistics, 457-461 (1952) · Zbl 0049.36505 · doi:10.1214/aoms/1177729391
[65] Xi, Yuanzhe, Fast computation of spectral densities for generalized eigenvalue problems, SIAM J. Sci. Comput., A2749-A2773 (2018) · Zbl 1416.65097 · doi:10.1137/17M1135542
[66] Yang, Chao, A constrained optimization algorithm for total energy minimization in electronic structure calculations, J. Comput. Phys., 709-721 (2006) · Zbl 1102.81340 · doi:10.1016/j.jcp.2006.01.030
[67] Zhang, Xin, Gradient type optimization methods for electronic structure calculations, SIAM J. Sci. Comput., C265-C289 (2014) · Zbl 1300.82006 · doi:10.1137/130932934
[68] Zhou, Y., Self-consistent-field calculations using chebyshev-filtered subspace iteration, J. Comput.Phys., 172\ndash 184 pp. (2006) · Zbl 1105.65111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.