×

Group inverse for two classes of \(2\times 2\) block matrices over rings. (English) Zbl 1312.15004

The manuscript deals with the group inverse for particular classes of matrices over rings.
A square matrix \(A\) is said to be group invertible if there exists a matrix \(X\), denoted by \(X=A^{\sharp}\), such that \[ AXA=A, \;\;XAX=X \;\;\text{and} \;\;AX=XA. \]
In this paper, the authors obtain necessary and sufficient conditions for the existence of the group inverse of two classes of \(2 \times 2\) block matrices over an associative ring \(R\). In addition, the representations of the group inverse of two classes are given. The studied classes are the following:
(1) \(M=\left( \begin{matrix} AX+YB & A \\ B & 0 \end{matrix} \right)\), where \(A, B, X, Y \in R^{n \times n}\), \(A^{\sharp}\) exists, \(XA=AX\) and \(X\) is invertible.
(2) \(M=\left( \begin{matrix} A & B \\ C & D \end{matrix} \right)\), where \(A \in R^{n \times n}\), \(D \in R^{m \times m}\), \(CA=C\), \(AB=B\) and \((D-CB)^{\sharp}\) exists.

MSC:

15A09 Theory of matrix inversion and generalized inverses
15B33 Matrices over special rings (quaternions, finite fields, etc.)
16U30 Divisibility, noncommutative UFDs

References:

[1] Ben-Israel A, Greville TNE (2003) Generalized inverses: theory and applications, 2nd edn. Springer, New York · Zbl 1026.15004
[2] Bhaskara Rao, KPS (2002)The theory of generalized inverses over commutative rings. Taylor and Francis, London · Zbl 0992.15003
[3] Bu C, Li M, Zhang K, Zheng L (2009) Group inverse for the block matrices with an invertible subblock. Appl Math Comput 215:132–139 · Zbl 1181.15003 · doi:10.1016/j.amc.2009.04.054
[4] Bu C, Zhang K, Zhao J (2010) Some results on the group inverse of the block matrix with a subblock of linear combination or product combination of matrices over shew fields. Linear Multilinear Algebra 58:957–966 · Zbl 1204.15010 · doi:10.1080/03081080903092243
[5] Bu C, Zhang K (2011) Representations of the Drazin inverse on solution of a class singular differential equations. Linear Multilinear Algebra 59:863–877 · Zbl 1227.15002 · doi:10.1080/03081087.2010.512291
[6] Bu C, Feng C, Dong P (2012) A note on computational formulas for the Drazin inverse of certain block matrices. J Appl Math Comput 38:631–640 · Zbl 1295.65041 · doi:10.1007/s12190-011-0501-4
[7] Cao C, Li J (2011) A note on the group inverse of some $$2\(\backslash\)times 2$$ 2 {\(\times\)} 2 block matrices over skew fields. Appl Math Comput 217:10271–10277 · Zbl 1222.15004 · doi:10.1016/j.amc.2011.05.027
[8] Cao C, Zhao C (2012) Group inverse for a class of $$2\(\backslash\)times 2$$ 2 {\(\times\)} 2 anti-triangular block matrices over skew fields. J Appl Math Comput 40:87–93 · Zbl 1295.15003
[9] Catral M, Olesky DD, Driessche P (2008) Group inverse of matrices with path graphs. Electron J Linear Algebra 11:219–233 · Zbl 1154.15004
[10] Drazin MP (1958) Pseudo-inverses in associative rings and semigroups. Am Math Mon 65:506–514 · Zbl 0083.02901 · doi:10.2307/2308576
[11] Ge Y, Zhang H, Sheng Y, Cao C (2012) Group inverse for two classes of $$2\(\backslash\)times 2$$ 2 {\(\times\)} 2 anti-triangular block matrices over right Ore domains. J Appl Math Comput doi: 10.1007/s12190-012-0636-y · Zbl 1298.15008
[12] Golub GH, Greif C (2003) On solving block-structured indefinite linear systems. SIAM J Sci Comput 24:2076–2092 · Zbl 1036.65033 · doi:10.1137/S1064827500375096
[13] Heinig G (1997) The group inverse of the transformation $$\(\backslash\)varphi (X)=AB=XB$$ {\(\phi\)} ( X ) = A B = X B . Linear Algebra Appl 257:321–342 · Zbl 0874.15004 · doi:10.1016/S0024-3795(96)00165-6
[14] Liu X, Wu L, Benítez J (2011) On the group inverse of linear combinations of two group invertible matrices. Electron J Linear Algebra 22:490–503 · Zbl 1223.15005
[15] Liu X, Yang H (2012) Further results on the group inverses and Drazin inverses of anti-triangular block matrices. Appl Math Comput 218:8978–8986 · Zbl 1251.15007 · doi:10.1016/j.amc.2012.02.058
[16] Liu X, Xu Z, Zhao Q, Wei H (2012) On the perturbation of weighted group inverse of rectangular matrices. J Appl Math Comput. doi: 10.1007/s12190-012-0629-x · Zbl 1298.15010
[17] Patrício P, Hartwig RE (2010) The $$(2,2,0)$$ ( 2 , 2 , 0 ) group inverse problem. Appl Math Comput 217:516–520 · Zbl 1204.15014 · doi:10.1016/j.amc.2010.05.084
[18] Soares AS, Latouche G (2002) The group inverse of finite homogeneous QBD processes. Stoch Models 18:159–171 · Zbl 1005.60093 · doi:10.1081/STM-120002779
[19] Wei Y (1998) Index splitting for the Drazin inverse and the singular linear system. Appl Math Comput 95:115–124 · Zbl 0942.15003 · doi:10.1016/S0096-3003(97)10098-4
[20] Wei Y, Diao H (2005) On group inverse of singular Toeplitz matrices. Linear Algebra Appl 399:109–123 · Zbl 1072.15007 · doi:10.1016/j.laa.2004.08.021
[21] Zhang K, Bu C (2012) Group inverses of matrices over right Ore domains. Appl Math Comput 218:6942–6953 · Zbl 1248.15005 · doi:10.1016/j.amc.2011.12.071
[22] Zhao J, Hu Z, Zhang K, Bu C (2012) Group inverse for block matrix with t-potent subblock. J Appl Math Comput 39:109–119 · Zbl 1295.15006 · doi:10.1007/s12190-011-0514-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.