×

Hierarchical models for independence structures of networks. (English) Zbl 1541.62143

Summary: We introduce a new family of network models, called hierarchical network models, that allow us to represent in an explicit manner the stochastic dependence among the dyads (random ties) of the network. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the dyads of the network, called the dependency graph. Every network model with dyadic independence assumption can be generalized to construct members of this new family. Using this new framework, we generalize the Erdös-Rényi and the \(\beta\) models to create hierarchical Erdös-Rényi and \(\beta\) models. We describe various methods for parameter estimation, as well as simulation studies for models with sparse dependency graphs.
{© 2019 The Authors. Statistica Neerlandica © 2019 VVS.}

MSC:

62H22 Probabilistic graphical models
05C80 Random graphs (graph-theoretic aspects)
62H17 Contingency tables
91D30 Social networks; opinion dynamics

References:

[1] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., … Sorensen, D. (1999). LAPACK users’ guide(3rd ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics. · Zbl 0934.65030
[2] Bishop, Y. M., Fienberg, S. E., & Holland P. W. (2007). Discrete multivariate analysis: Theory and practice. New York, NY: Springer‐Verlag. · Zbl 1131.62043
[3] Blitzstein, J., & Diaconis, P. (2010). A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Mathematics, 6(4), 489-522. · Zbl 1238.60084
[4] Chatterjee, S., Diaconis, P., & Sly, A. (2011). Random graphs with a given degree sequence. The Annals of Applied Probability, 21(4), 1400-1435. · Zbl 1234.05206
[5] Darroch, J. N., Lauritzen, S. L., & Speed, T. P. (1980). Markov fields and log‐linear interaction models for contingency tables. The Annals of Statistics, 8, 522-539. · Zbl 0444.62064
[6] Drton, M., & Richardson, T. S. (2008). Binary models for marginal independence. Journal of the Royal Statistical Society Series B (Statistical Methodology), 70(2), 287-309. · Zbl 1148.62043
[7] Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae Debrecen, 6, 290-297. · Zbl 0092.15705
[8] Fellows, I., & Mark, S. (2012). Handcock exponential‐family random network models. http://arxiv.org/abs/1208.0121
[9] Fienberg, S. E., & Wasserman, S. (1981). Discussion of an exponential family of probability distributions for directed graphs by Holland and Leinhardt. Journal of the American Statistical Association, 76, 54-57.
[10] Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81, 832-842. · Zbl 0607.05057
[11] Handcock, M. (2003). Assessing degeneracy in statistical models for social networks (Report No. 39). Seattle, WA: Center for Statistics in the Social Sciences, University of Washington.
[12] Holland, P., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76(373). · Zbl 0457.62090
[13] Hunter, D. R., & Handcock, M. S. (2006). Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15(3), 565-583.
[14] Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2007). A package to fit, simulate and diagnose exponential‐family models for networks. Journal of Statistical Software, 24(3), 1-29.
[15] Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit for social network models. Journal of the American Statistical Association, 103, 248-258. · Zbl 1471.62390
[16] Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2013). ergm.userterms: A template package for extending statnet. Journal of Statistical Software, 52(2), i02.
[17] Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31, 204-213.
[18] Lauritzen, S. L. (1996). Graphical models. New York, NY: Oxford University Press. · Zbl 0907.62001
[19] Lauritzen, S. L., Rinaldo, A., & Sadeghi, K. (2018). Random networks, graphical models and exchangeability. Journal of the Royal Statistical Society Series B (Statistical Methodology), 80(3), 481-508. · Zbl 1398.62218
[20] Lauritzen, S. L., Rinaldo, A., & Sadeghi, K. (2019). On exchangeability in network models. Journal of Algebraic Statistics, 10, 85-113. · Zbl 1418.60028
[21] Leisch, F., Weingessel, A., & Hornik, K. (1998). On the generation of correlated artificial binary data. https://epub.wu.ac.at/286/1/document.pdf
[22] Lozares, C., Verd, J., Cruz, I., & Barranco, O. (2014). Homophily and heterophily in personal networks. From mutual acquaintance to relationship intensity. Quality & Quantity, 48(5), 2657-2670.
[23] Lupparelli, M., Marchetti, G. M., & Bergsma, W. P. (2009). Parameterization and fitting of discrete bi‐directed graph models. Scandinavian Journal of Statistics, 36, 559-576. · Zbl 1196.62074
[24] Lusher, D., Koskinen, J., & Garry, R. (2012). Introduction. In D.Lusher (ed.), J.Koshkinen (ed.), & G.Robins (ed.) (Eds.), Exponential random graph models for social networks: Theory, methods, and applications (pp. 1-6). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511894701.001 · doi:10.1017/CBO9780511894701.001
[25] Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann Publishers.
[26] Rinaldo, A., Fienberg, S. E., & Zhou, Y. (2009). On the geometry of discrete exponential families with application to exponential random graph models. Electronic Journal of Statistics, 3, 446-484. · Zbl 1326.62071
[27] Rinaldo, A., Petrović, S., & Fienberg, S. E. (2013). Maximum likelihood estimation in the beta model. The Annals of Statistics, 41(3), 1085-1110. · Zbl 1292.62052
[28] Robins, G., Snijders, T., Wang, P., Handcock, M., & Pattison, P. (2007). Recent developments in exponential random graph (p^∗) models for social networks. Social Networks, 29, 192-215.
[29] Roverato, A., Lupparelli, M., & La Rocca, L. (2013). Log‐mean linear models for binary data. Biometrika, 100(2), 485-494. · Zbl 1284.62465
[30] Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete exponential families. Journal of the American Statistical Association, 106(496), 1361-1370. · Zbl 1233.62020
[31] Schweinberger, M., & Handcock, M. S. (2012). Hierarchical exponential‐family random graph models with local dependence. http://sites.stat.psu.edu/mus47/publications/h.ergm.pdf
[32] Snyman, J. A. (2005). Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient‐based algorithms. Berlin, Germany: Springer‐Verlag. · Zbl 1104.90003
[33] Speed, T. P., & Kiiveri, H. T. (1986). Gaussian Markov distributions over finite graphs. The Annals of Statistics, 14(1), 138-150. · Zbl 0589.62033
[34] Thiemichen, S., & Kauermann, G. (2017). Stable exponential random graph models with non‐parametric components for large dense networks. Social Networks, 49, 67-80.
[35] West, D. B. (2001). Introduction to graph theory. Upper Saddle River, NJ: Prentice Hall.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.