×

\( L^2 \)-gradient flows of spectral functionals. (English) Zbl 07700771

Summary: We study the \(L^2 \)-gradient flow of functionals \(\mathscr{F}\) depending on the eigenvalues of Schrödinger potentials \(V\) for a wide class of differential operators associated with closed, symmetric, and coercive bilinear forms, including the case of all the Dirichlet forms (such as for second order elliptic operators in Euclidean domains or Riemannian manifolds). We suppose that \(\mathscr{F}\) arises as the sum of a \((-\theta) \)-convex functional \(\mathscr{K}\) with proper domain \({\mathbb{K}}\subset L^2 \), forcing the admissible potentials to stay above a constant \(V_{\min}\), and a term \(\mathscr{H}(V) = \varphi(\lambda_1(V), \cdots, \lambda_J(V))\) which depends on the first \(J\) eigenvalues associated with \(V\) through a \({\mathrm{C}}^1\) function \(\varphi \). Even though \({\mathscr{H}}\) is not a smooth perturbation of a convex functional (and it is in fact concave in simple important cases as the sum of the first \(J\) eigenvalues) and we do not assume any compactness of the sublevels of \(\mathscr K \), we prove the convergence of the Minimizing Movement method to a solution \(V\in H^1(0, T;L^2)\) of the differential inclusion \(V'(t)\in -\partial_L^- \mathscr F(V(t)) \), which under suitable compatibility conditions on \(\varphi\) can be written as \[V'(t)+\sum\limits_{i = 1}^J\partial_i\varphi(\lambda_1(V(t)), \dots, \lambda_J(V(t)))u_i^2(t)\in -\partial_F^- \mathscr K(V(t)) \] where \((u_1(t), \dots, u_J(t))\) is an orthonormal system of eigenfunctions associated with the eigenvalues \((\lambda_1(V(t)), \dots, \lambda_J(V(t)))\) and \(\partial^-_L \) (resp. \( \partial^-_F )\) denotes the limiting (resp. Fréchet) subdifferential.

MSC:

47A75 Eigenvalue problems for linear operators
34G25 Evolution inclusions
35J10 Schrödinger operator, Schrödinger equation
35A15 Variational methods applied to PDEs
58D25 Equations in function spaces; evolution equations

References:

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008. · Zbl 1145.35001
[2] H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, MA, 1984. · Zbl 0561.49012
[3] H. F. L. Berestycki Hamel Roques, Analysis of the periodically fragmented environment model. Ⅰ. Species persistence, J. Math. Biol., 51, 75-113 (2005) · Zbl 1066.92047 · doi:10.1007/s00285-004-0313-3
[4] J. M. Q. J. Borwein Zhu, A survey of subdifferential calculus with applications, Nonlinear Anal., 38, 687-773 (1999) · Zbl 0933.49006 · doi:10.1016/S0362-546X(98)00142-4
[5] H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Mathematics Studies, No. 50. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. · Zbl 0252.47055
[6] D. G. U. Bucur Buttazzo Stefanelli, Shape flows for spectral optimization problems, Interfaces Free Bound., 14, 521-544 (2012) · Zbl 1263.49051 · doi:10.4171/IFB/290
[7] G. G. Buttazzo Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal., 122, 183-195 (1993) · Zbl 0811.49028 · doi:10.1007/BF00378167
[8] G. A. B. B. Buttazzo Gerolin Ruffini Velichkov, Optimal potentials for Schrödinger operators, J. Éc. Polytech. Math., 1, 71-100 (2014) · Zbl 1306.49018 · doi:10.5802/jep.4
[9] R. S. C. Cantrell Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112, 293-318 (1989) · Zbl 0711.92020 · doi:10.1017/S030821050001876X
[10] P. G. Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis. Vol. II, Handbook of Numerical Analysis, Ⅱ. North-Holland, Amsterdam, 1991. Finite element methods. Part 1. · Zbl 0712.65091
[11] F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, volume 178 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1998. · Zbl 1047.49500
[12] G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, Volume 293 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2002. · Zbl 1012.35001
[13] G. Dal Maso, An Introduction to \(\Gamma \)-Convergence, Volume 8 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0816.49001
[14] E. B. Davies, Heat Kernels and Spectral Theory, Volume 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990.
[15] G. P. R. H. M. Doǧan Morin Nochetto Verani, Discrete gradient flows for shape optimization and applications, Comput. Methods Appl. Mech. Engrg., 196, 3898-3914 (2007) · Zbl 1173.49307 · doi:10.1016/j.cma.2006.10.046
[16] N. Dunford and J. T. Schwartz, Linear Operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral Theory. Selfadjoint Operators in Hilbert Space, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publication.
[17] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Volume 19 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended edition, 2011. · Zbl 1227.31001
[18] A. Henrot, editor, Shape Optimization and Spectral Theory, De Gruyter, 2017. · Zbl 1369.49004
[19] A. Henrot and M. Pierre, Shape Variation and Optimization. A Geometrical Analysis, English Version of the French Publication with Additions and Updates, Volume 28 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2018. · Zbl 1392.49001
[20] J.-B. D. Hiriart-Urruty Ye, Sensitivity analysis of all eigenvalues of a symmetric matrix, Numer. Math., 70, 45-72 (1995) · Zbl 0816.15016 · doi:10.1007/s002110050109
[21] A. Ja. Kruger and B. Š. Mordukhovich, Extremal points and the Euler equation in nonsmooth optimization problems, Dokl. Akad. Nauk BSSR, 24 (1980), 684-687, 763. · Zbl 0449.49015
[22] J. Lamboley, A. Laurain, G. Nadin and Y. Privat, Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions, Calc. Var. Partial Differential Equations, 55 (2016), Art. 144, 37 pp. · Zbl 1366.49004
[23] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and its Applications, Springer Series in Statistics. Springer, New York, second edition, 2011. · Zbl 1219.26003
[24] B. Sh. Mordukhovich, Maximum principle in the problem of time optimal response with nonsmooth constraints, Prikl. Mat. Meh., 40, 1014-1023 (1976) · Zbl 0362.49017 · doi:10.1016/0021-8928(76)90136-2
[25] B. Sh. Mordukhovich, Nonsmooth analysis with nonconvex generalized differentials and conjugate mappings, Dokl. Akad. Nauk BSSR, 28, 976-979 (1984) · Zbl 0557.49007
[26] M. L. R. S. Overton Womersley, Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices, Math. Programming, 62, 321-357 (1993) · Zbl 0806.90114 · doi:10.1007/BF01585173
[27] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Volume 317 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998. · Zbl 0888.49001
[28] R. G. Rossi Savaré, Gradient flows of non convex functionals in hilbert spaces and applications, ESAIM Control Optim. Calc. Var., 12, 564-614 (2006) · Zbl 1116.34048 · doi:10.1051/cocv:2006013
[29] W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. · Zbl 0253.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.