×

Coupled equations for Kähler metrics and Yang-Mills connections. (English) Zbl 1275.32019

Summary: We study equations on a principal bundle over a compact complex manifold coupling a connection on the bundle with a Kähler structure on the base. These equations generalize the conditions of constant scalar curvature for a Kähler metric and Hermite-Yang-Mills for a connection. We provide a moment map interpretation of the equations and study obstructions for the existence of solutions, generalizing the Futaki invariant, the Mabuchi K-energy and geodesic stability. We finish by giving some examples of solutions.

MSC:

32Q15 Kähler manifolds
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)

References:

[1] M C Abbati, R Cirelli, A Manià, P Michor, The Lie group of automorphisms of a principal bundle, J. Geom. Phys. 6 (1989) 215 · Zbl 0692.58010 · doi:10.1016/0393-0440(89)90015-6
[2] L Álvarez-Cónsul, M García-Fernández, O García-Prada, Gravitating vortices, in preparation
[3] B Anchouche, I Biswas, Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math. 123 (2001) 207 · Zbl 1007.53026 · doi:10.1353/ajm.2001.0007
[4] M F Atiyah, R Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523 · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[5] T Aubin, Some nonlinear problems in Riemannian geometry, Springer (1998) · Zbl 0896.53003
[6] A L Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. 10, Springer (1987) · Zbl 0613.53001
[7] J P Bourguignon, Invariants intégraux fonctionnels pour des équations aux dérivées partielles d’origine géométrique (editors B Bojarski, W Zaj\caczkowski, B Ziemian), Banach Center Publ. 27, Polish Acad. Sci. (1992) 65 · Zbl 0793.53045
[8] E Calabi, Extremal Kähler metrics (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 259 · Zbl 0487.53057
[9] L Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994) 589 · Zbl 0827.14014 · doi:10.2307/2152786
[10] X X Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 · Zbl 1041.58003
[11] X X Chen, Space of Kähler metrics, III: On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009) 453 · Zbl 1163.58005 · doi:10.1007/s00222-008-0153-7
[12] X X Chen, S K Donaldson, S Sun, Kähler-Einstein metrics and stability · Zbl 1281.32019
[13] X X Chen, G Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. (2008) 1 · Zbl 1182.32009 · doi:10.1007/s10240-008-0013-4
[14] S K Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom. 18 (1983) 269 · Zbl 0504.49027
[15] S K Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1 · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[16] S K Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231 · Zbl 0627.53052 · doi:10.1215/S0012-7094-87-05414-7
[17] S K Donaldson, Remarks on gauge theory, complex geometry and \(4\)-manifold topology (editors M F Atiyah, D Iagolnitzer), World Sci. Ser. 20th Century Math. 5, World Sci. Publ. (1997) 384
[18] S K Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 · Zbl 0972.53025
[19] S K Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001) 479 · Zbl 1052.32017
[20] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, The Clarendon Press (1990) · Zbl 0820.57002
[21] A Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku Expositions 5 (1992) 173 · Zbl 0796.32009
[22] A Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983) 437 · Zbl 0506.53030 · doi:10.1007/BF01388438
[23] A Futaki, Asymptotic Chow semi-stability and integral invariants, Internat. J. Math. 15 (2004) 967 · Zbl 1074.53060 · doi:10.1142/S0129167X04002612
[24] A Futaki, H Ono, Einstein metrics and GIT stability, S\Bugaku 60 (2008) 175 · Zbl 1232.53058
[25] M García-Fernández, Coupled equations for Kähler metrics and Yang-Mills connections, PhD thesis, Instituto de Ciencias Matem��ticas, Madrid (2009)
[26] M García-Fernández, C Tipler, Deformation of complex structures and the coupled Kähler-Yang-Mills equations
[27] D Gieseker, I Morrison, Hilbert stability of rank-two bundles on curves, J. Differential Geom. 19 (1984) 1 · Zbl 0573.14005
[28] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 · Zbl 0592.53025 · doi:10.1007/BF01388806
[29] Y J Hong, Constant Hermitian scalar curvature equations on ruled manifolds, J. Differential Geom. 53 (1999) 465 · Zbl 1163.53341
[30] Y J Hong, Stability and existence of critical Kaehler metrics on ruled manifolds, J. Math. Soc. Japan 60 (2008) 265 · Zbl 1180.53039 · doi:10.2969/jmsj/06010265
[31] L Huang, On joint moduli spaces, Math. Ann. 302 (1995) 61 · Zbl 0834.32004 · doi:10.1007/BF01444487
[32] J Keller, C W Tønnesen-Friedman, Nontrivial examples of coupled equations for Kähler metrics and Yang-Mills connections, Cent. Eur. J. Math. 10 (2012) 1673 · Zbl 1269.53049 · doi:10.2478/s11533-012-0088-5
[33] G Kempf, L Ness, The length of vectors in representation spaces (editor K Lønsted), Lecture Notes in Math. 732, Springer (1979) 233 · Zbl 0407.22012
[34] S Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan 15, Princeton Univ. Press (1987) · Zbl 0708.53002
[35] S Kobayashi, K Nomizu, Foundations of differential geometry, Vol. I, John Wiley (1963) · Zbl 0119.37502
[36] S Kobayashi, K Nomizu, Foundations of differential geometry, Vol. II, Interscience Tracts in Pure and Applied Mathematics 15, John Wiley (1969) · Zbl 0175.48504
[37] C LeBrun, The Einstein-Maxwell equations, extremal Kähler metrics, and Seiberg-Witten theory (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 17 · Zbl 1229.53073 · doi:10.1093/acprof:oso/9780199534920.003.0003
[38] C LeBrun, S R Simanca, On the Kähler classes of extremal metrics (editors T Kotake, S Nishikawa, R Schoen), Tohoku Univ. (1993) 255 · Zbl 0921.53032
[39] C LeBrun, S R Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994) 298 · Zbl 0801.53050 · doi:10.1007/BF01896244
[40] J Li, S T Yau, The existence of supersymmetric string theory with torsion, J. Differential Geom. 70 (2005) 143 · Zbl 1102.53052
[41] T Mabuchi, \(K\)-energy maps integrating Futaki invariants, Tohoku Math. J. 38 (1986) 575 · Zbl 0619.53040 · doi:10.2748/tmj/1178228410
[42] T Mabuchi, Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math. 24 (1987) 227 · Zbl 0645.53038
[43] J E Marsden, G Misiołek, J P Ortega, M Perlmutter, T S Ratiu, Hamiltonian reduction by stages, Lecture Notes in Math. 1913, Springer (2007) · Zbl 1129.37001 · doi:10.1007/978-3-540-72470-4
[44] M Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ. 18 (1978) 557 · Zbl 0395.14006
[45] D McDuff, D Salamon, Introduction to symplectic topology, The Clarendon Press (1998) · Zbl 0844.58029
[46] R Pandharipande, A compactification over \(\barM_{\!g}\) of the universal moduli space of slope-semistable vector bundles, J. Amer. Math. Soc. 9 (1996) 425 · Zbl 0886.14002 · doi:10.1090/S0894-0347-96-00173-7
[47] A Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975) 129 · Zbl 0284.32019 · doi:10.1007/BF01343949
[48] A Ramanathan, S Subramanian, Einstein-Hermitian connections on principal bundles and stability, J. Reine Angew. Math. 390 (1988) 21 · Zbl 0648.53017
[49] I Mundet i Riera, A Hitchin-Kobayashi correspondence for Kähler fibrations, J. Reine Angew. Math. 528 (2000) 41 · Zbl 1002.53057 · doi:10.1515/crll.2000.092
[50] G Schumacher, M Toma, Moduli of Kähler manifolds equipped with Hermite-Einstein vector bundles, Rev. Roumaine Math. Pures Appl. 38 (1993) 703 · Zbl 0813.32019
[51] S Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 · Zbl 0790.32017 · doi:10.2307/2374768
[52] I M Singer, The geometric interpretation of a special connection, Pacific J. Math. 9 (1959) 585 · Zbl 0086.15101 · doi:10.2140/pjm.1959.9.585
[53] J Stoppa, Twisted constant scalar curvature Kähler metrics and Kähler slope stability, J. Differential Geom. 83 (2009) 663 · Zbl 1203.32006
[54] A Teleman, Symplectic stability, analytic stability in non-algebraic complex geometry, Internat. J. Math. 15 (2004) 183 · Zbl 1089.53058 · doi:10.1142/S0129167X04002223
[55] G Tian, K-stability and Kähler-Einstein metrics · Zbl 1318.14038
[56] G Tian, Canonical metrics in Kähler geometry, Birkhäuser (2000) · Zbl 0978.53002 · doi:10.1007/978-3-0348-8389-4
[57] G Tian, S T Yau, Kähler-Einstein metrics on complex surfaces with \(C_1> 0\), Comm. Math. Phys. 112 (1987) 175 · Zbl 0631.53052 · doi:10.1007/BF01217685
[58] K Uhlenbeck, S T Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) · Zbl 0615.58045 · doi:10.1002/cpa.3160390714
[59] X Wang, Moment map, Futaki invariant and stability of projective manifolds, Comm. Anal. Geom. 12 (2004) 1009 · Zbl 1086.53101 · doi:10.4310/CAG.2004.v12.n5.a2
[60] Y S Yang, Prescribing topological defects for the coupled Einstein and abelian Higgs equations, Comm. Math. Phys. 170 (1995) 541 · Zbl 0846.58078 · doi:10.1007/BF02099149
[61] S T Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.