×

On counter-examples to Aizerman and Kalman conjectures. (English) Zbl 1485.93222

Summary: Counter-examples to Aizerman’s and Kalman’s conjectures are considered. Investigation of the behaviour in the vicinity of the origin and at a distance from the origin is done. The simultaneous existence of both: a limit cycle and asymptotic or finite-time convergence is proved through the LPRS method and the Lyapunov method, respectively. Conclusions regarding the complex behaviour of these nonlinear dynamic systems are given.

MSC:

93C10 Nonlinear systems in control theory
93B52 Feedback control
Full Text: DOI

References:

[1] Aizerman, M., On a problem regarding stability ‘in the large’ of dynamical, Uspekhi Matematicheskikh Nauk, 4, 4, 187-188 (1949) · Zbl 0040.19601
[2] Alli-Oke, R., Carrasco, J., Heath, W. P., & Lanzon, A. (2012). A robust Kalman conjecture for first-order plants. in IFAC proceedings volumes (Vol. 7, pp. 27-32).
[3] Anosov, D., On the stability of the equilibrium positions of relay systems, Automation and Remote Control, 20, 135-149 (1959) · Zbl 0093.09204
[4] Astrom, K., Oscillations in systems with relay feedback, The IMA Volumes in Mathematics and its Applications: Adaptive Control, Filtering and Signal Processing, 74, 1-25 (1995) · Zbl 0829.93032 · doi:10.1007/978-1-4419-8568-2_1
[5] Barabanov, N. E., On the Kalman problem, Siberian Mathematical Journal, 29, 3, 333-341 (1988) · Zbl 0713.93044 · doi:10.1007/BF00969640
[6] Bernat, J.; Llibre, J., Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3, Dynamics of Continuous, Discrete and Impulsive Systems, 2, 3, 337-379 (1996) · Zbl 0889.34047
[7] Boiko, I., Oscillations and transfer properties of relay servo systems: The locus of a perturbed relay system approach, Automatica, 41, 4, 677-683 (2005) · Zbl 1061.93518 · doi:10.1016/j.automatica.2004.11.002
[8] Boiko, I., Discontinuous control systems: Frequency-domain analysis and design (2009), Springer London · Zbl 1165.93002
[9] Boiko, I. M., Chattering in sliding mode control systems with boundary layer approximation of discontinuous control, International Journal of Systems Science, 44, 6, 1126-1133 (2013) · Zbl 1278.93063 · doi:10.1080/00207721.2011.652233
[10] Filippov, A., Differential equations with discontinuous right-hand sides (1988), Kluwer · Zbl 0664.34001
[11] Fitts, R., Two counterexamples to Aizerman’s conjecture, IEEE Transactions on Automatic Control, AC-11, 3, 553-556 (1966) · doi:10.1109/TAC.1966.1098369
[12] Fridman, L. M., Singularly perturbed analysis of chattering in relay control systems, IEEE Transactions on Automatic Control, 47, 12, 2079-2084 (2002) · Zbl 1364.93491 · doi:10.1109/TAC.2002.805672
[13] Gelig, A. Kh.; Leonov, G. A.; Yakubovich, V. A., Stability of nonlinear systems with nonunique equilibrium (1978), Nauka · Zbl 0544.93051
[14] Glutsyuk, A., Meetings of the Moscow mathematical society, Russian Mathematical Surveys, 53, 2, 413-417 (1998) · doi:10.1070/RM1998v053n02ABEH000012
[15] Heath, W. P.; Carrasco, J.; de la Sen, M., Second-order counterexamples to the discrete-time Kalman conjecture, Automatica, 60, 140-144 (2015) · Zbl 1331.93168 · doi:10.1016/j.automatica.2015.07.005
[16] Johansson, K. H.; Rantzer, A.; Åström, K. J., Fast switches in relay feedback systems, Automatica, 35, 4, 539-552 (1999) · Zbl 0934.93033 · doi:10.1016/S0005-1098(98)00160-5
[17] Kalman, R., Physical and mathematical mechanisms of instability in nonlinear automatic control systems, Transactions of ASME, 79, 3, 553-566 (1957)
[18] Krylov, N.; Bogolyubov, N., Introduction to non-linear mechanics (in Russian) (1937), AN USSR
[19] Kuznetsov, N. V.; Leonov, G. A., Hidden attractors in dynamical systems: Systems with no equilibria, multistability and coexisting attractors, IFAC Proceedings Volumes, 47, 3, 5445-5454 (2014) · doi:10.3182/20140824-6-ZA-1003.02501
[20] Kuznetsov, N. V., & Leonov, G. A. (2018). On the Keldysh problem of flutter suppression. In AIP conference proceedings. Art. Num. 020002.
[21] Leonov, G.; Kuznetsov, N., Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23, 1 (2013) · Zbl 1270.34003 · doi:10.1142/S0218127413300024
[22] Liao, X.; Yu, P., Absolute stability of nonlinear control systems. Mathematical modelling: Theory and applications (2008), Springer · Zbl 1151.93002
[23] Meisters, G. (1996). A biography of the Markus-Yamabe conjecture. http://www.math.unl.edu/gmeisters1/papers/HK1996.pdf
[24] Piiroinen, P. T.; Kuznetsov, Y. A., An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions on Mathematical Software, 34, 3, 13 (2008) · Zbl 1190.65109 · doi:10.1145/1356052.1356054
[25] Popov, V., On absolute stability of nonlinear systems of automatic control, Avtomat. i Telemekh., 22, 8, 961-979 (1961) · Zbl 0107.29601
[26] Tsypkin, Y., Relay control systems (1984), Cambridge University Press · Zbl 0571.93001
[27] Utkin, V., Sliding modes in control and optimization (1992), Springer-Verlag · Zbl 0748.93044
[28] Van der Pol, B., On ‘relaxation-oscillations’, Philosophical Magazine and Journal of Science, 2, 11, 978-992 (1926) · JFM 52.0450.05 · doi:10.1080/14786442608564127
[29] Varigonda, S.; Georgiou, T. T., Dynamics of relay relaxation oscillators, IEEE Transactions on Automatic Control, 46, 1, 65-77 (2001) · Zbl 1004.34034 · doi:10.1109/9.898696
[30] Zhang, J., Heath, W. P., & Carrasco, J. (2018). Kalman conjecture for resonant second-order systems with time delay. In IEEE conference on decision and control (CDC) (pp. 3938-3943).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.