×

Entanglement and Yangian in a \({V^{\otimes 3}}\) Yang-Baxter system. (English) Zbl 1239.81028

Summary: In this paper, a \(8 \times 8\) unitary Yang-Baxter matrix \({\breve{R}_{123}(\theta_{1},\theta_{2},\phi)}\) acting on the triple tensor product space, which is a solution of the Yang-Baxter Equation for three qubits, is presented. Then quantum entanglement and the Berry phase of the Yang-Baxter system are studied. The Yangian generators, which can be viewed as the shift operators, are investigated in detail. And it is worth mentioning that the Yangian operators we constructed are independent of choice of basis.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
16T25 Yang-Baxter equations
Full Text: DOI

References:

[1] Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989) · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[2] Nielsen M.A, Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[3] Stenholm S., Suominen K.-A.: Quantum Approach to Informatics. Wiley, Hoboken (2005)
[4] Drinfeld V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl 32, 254–258 (1985)
[5] Bernard, D: An introduction to Yangian symmetries. Int. J. Mod. Phys. B7 3517C3530, (1993). [hep-th/9211133] · Zbl 0861.35085
[6] Arnaudon, D., Molev, A., Ragoucy, E.: On the R-matrix realization of Yangians and their representations. Annales Henri Poincare, 7, 1269–1325, (2006). [math.QA/0511481v1] · Zbl 1227.17008
[7] Bai, C.M., Ge, M.L., Xue K.: Yangian and its applications. Inspired by s.s. chen: A Memorial vol.II in Honor of A Great Mathematician, Edited by P.A. Griffiths, World Scientific, Singapore, pp. 45–93, (2006) · Zbl 1208.81116
[8] Tian L.J., Zhang H.B., Jin S., Xue K.: Y(sl(2)) algebra application in extended hydrogen atom and monopolemodels. Commun. Theor. Phys. 41, 641 (2004) · Zbl 1167.81416
[9] Ge M.L., Kwek L.C., Oh C.H., Xue K.: Yangians and transition operators. Czech. J. phys. 50, 1229 (2000) · Zbl 1047.82501 · doi:10.1023/A:1022852722391
[10] Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction; S matrix for the one-dimensional N-body problem with repulsive or attractive {\(\delta\)}-function interaction. Phys. Rev. Lett. 19, 1312 (1967) · Zbl 0152.46301 · doi:10.1103/PhysRevLett.19.1312
[11] Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction; S matrix for the one-dimensional N-body problem with repulsive or attractive {\(\delta\)}-function interaction. Phys. Rev. 168, 1920 (1968) · doi:10.1103/PhysRev.168.1920
[12] Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982) · Zbl 0538.60093
[13] Baxter R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193 (1972) · Zbl 0236.60070 · doi:10.1016/0003-4916(72)90335-1
[14] Drinfeld V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl 32, 254–258 (1985)
[15] Drinfeld V.G.: A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl 35, 212–216 (1988) · Zbl 0667.16004
[16] Drinfel’d, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Berkeley, California, 1986, vol. 1, pp. 798–820. Amer. Math Soc., Providence, RI (1987)
[17] Kitaev A.Y: Fault-tolerant quantum computation by anyons. Ann. Phys 303, 2 (2003) · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[18] Kauffman L.H., Lomonaco S.J. Jr.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004) · doi:10.1088/1367-2630/6/1/134
[19] Franko J.M., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theor. Ramif. 15, 413 (2006) · Zbl 1097.20034 · doi:10.1142/S0218216506004580
[20] Zhang Y., Kauffman L.H., Ge M.L.: Universal quantum gate, Yang-Baxterization and Hamiltonian. Int. J. Quant. Inf. 3, 669 (2005) · Zbl 1090.81023 · doi:10.1142/S0219749905001547
[21] Zhang Y., Ge M.L.: GHZ states, almost-complex structure and Yang–Baxter equation; from extraspecial two-groups to GHZ states. Quant. Inf. Proc. 6, 363 (2007) · Zbl 1133.81013 · doi:10.1007/s11128-007-0064-3
[22] Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z.H., Ge M.L.:GHZ states, almost-complex structure and Yang–Baxter equation; From extraspecial two-Groups to GHZ states. e-print quant-ph/0706.1761
[23] Chen J.L., Xue K., Ge M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A 76, 042324 (2007) · doi:10.1103/PhysRevA.76.042324
[24] Chen J.L., Xue K., Ge M.L.: Berry phase and quantum criticality in Yang–Baxter systems. Ann. Phys. 323, 2614 (2008) · Zbl 1192.81176 · doi:10.1016/j.aop.2008.06.003
[25] Chen, J.L., Xue, K., Ge, M.L.: All pure two-qudit entangled states can be generated via a universal Yang–Baxter matrix assisted by local unitary transformations. e-print quant-ph/0809.2321
[26] Hu T.T., Xue K., Wu C.F.: Berry phase and entanglement of three qubits in a new Yang–Baxter system. J. Math. Phys. 50, 083509 (2009) · Zbl 1298.81102 · doi:10.1063/1.3177295
[27] Franko J.M., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theor. Ramif. 15, 413 (2006) · Zbl 1097.20034 · doi:10.1142/S0218216506004580
[28] Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z., Ge, M.L.:Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates. e-print arXiv:0706.1761
[29] Fulton W., Harris J.: Representation Theory–A First Course. Vol. 129. Springer, New York (1991) · Zbl 0744.22001
[30] Griess R.: Automorphisms of extra special groups and nonvanishing degree two cohomology. Pacific J. Math. 48(2), 403–422 (1973) · Zbl 0283.20028 · doi:10.2140/pjm.1973.48.403
[31] Coffman V., Kundu J., Wootters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000) · doi:10.1103/PhysRevA.61.052306
[32] Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[33] Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A 392, 45 (1984) · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.