×

Simulation of spatially correlated clutter fields. (English) Zbl 1182.62185

Summary: Correlated \(\mathcal G\) distributions can be used to describe the clutter seen in images obtained with coherent illumination, as is the case of B-scan ultrasound, laser, sonar, and synthetic aperture radar (SAR) imagery. These distributions are derived using the square root of the generalized inverse Gaussian distribution for the amplitude backscatter within the multiplicative model. A two-parameter particular case of the amplitude \(\mathcal G\) distribution, called \(\mathcal G_A^0\), constitutes a modeling improvement with respect to the widespread \(\mathcal K_A\) distribution when fitting urban, forested, and deforested areas in remote sensing data.
This article deals with the modeling and the simulation of correlated \(\mathcal G_A^0\)-distributed random fields. It is accomplished by means of the inverse transform method, applied to Gaussian random fields with spatial correlation. The main feature of this approach is its generality, since it allows the introduction of negative correlation values in the resulting process, necessary for the proper explanation of the shadowing effect in many SAR images.

MSC:

62M40 Random fields; image analysis
65C60 Computational problems in statistics (MSC2010)
62P12 Applications of statistics to environmental and related topics

References:

[1] DOI: 10.1080/10629360600569154 · Zbl 1112.62013 · doi:10.1080/10629360600569154
[2] Almiron M., Brazilian Journal of Probability and Statistics
[3] DOI: 10.1007/978-94-009-8549-0_2 · doi:10.1007/978-94-009-8549-0_2
[4] DOI: 10.1155/S1110865701000166 · Zbl 0997.68155 · doi:10.1155/S1110865701000166
[5] Bustos O. H., Latin American Applied Research 31 pp 93– (2001)
[6] DOI: 10.1016/j.csda.2004.08.011 · Zbl 1431.62008 · doi:10.1016/j.csda.2004.08.011
[7] DOI: 10.1155/S1110865702000392 · Zbl 0995.68174 · doi:10.1155/S1110865702000392
[8] DOI: 10.1016/S0167-9473(02)00102-0 · Zbl 1103.62307 · doi:10.1016/S0167-9473(02)00102-0
[9] DOI: 10.1109/IGARSS.1995.519680 · doi:10.1109/IGARSS.1995.519680
[10] DOI: 10.1109/36.581981 · doi:10.1109/36.581981
[11] Frery A. C., Resenhas (IME-USP) 4 (1) pp 45– (1999)
[12] DOI: 10.1155/S111086570440907X · Zbl 1107.94318 · doi:10.1155/S111086570440907X
[13] DOI: 10.1080/01431160600702616 · doi:10.1080/01431160600702616
[14] Jain A. K., Fundamentals of Digital Image Processing (1989) · Zbl 0744.68134
[15] Kay S. M., Modern Spectral Estimation: Theory & Application (1988) · Zbl 0658.62108
[16] Mejail M. E., Revista de Teledetección 13 pp 37– (2000)
[17] Mejail M. E., Latin American Applied Research 31 pp 83– (2001)
[18] DOI: 10.1080/0143116021000053274 · doi:10.1080/0143116021000053274
[19] Moschetti E., Latin American Applied Research 36 (2) pp 115– (2006)
[20] Nascimento A. D. C., IEEE Transactions on Geoscience and Remote Sensing
[21] DOI: 10.1002/env.881 · doi:10.1002/env.881
[22] DOI: 10.1007/BF02741311 · Zbl 1091.62140 · doi:10.1007/BF02741311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.