×

Material-independent crack arrest statistics. (English) Zbl 1065.74059

Summary: The propagation of (planar) cracks in a heterogeneous brittle material characterized by a random field of toughness is considered, taking into account explicitly the effect of the crack front roughness on the local stress intensity factor. In the so-called strong-pinning regime, the onset of crack propagation appears to map onto a second-order phase transition characterized by universal critical exponents which are independent of the local characteristics of the medium. Propagation over large distances can be described by using a simple one-dimensional model, with a correlation length and an effective macroscopic toughness distribution that scale in a non-trivial fashion with the crack front length. As an application of the above concepts, the arrest of indentation cracks is addressed, and an analytical expression for the statistical distribution of crack radii at arrest is derived. The analysis of indentation crack radii on alumina is shown to obey the predicted algebraic expression for the radius distribution and its dependence on the indentation load.

MSC:

74R10 Brittle fracture
74E35 Random structure in solid mechanics

References:

[1] Bouchaud, E., Scaling properties of cracks, J. Phys. Condens. Matter, 9, 21, 4319-4344 (1997)
[2] Bouchaud, J.-P.; Bouchaud, E.; Lapasset, G.; Planés, J., Models of fractal cracks, Phys. Rev. Lett., 71, 2240-2243 (1993)
[3] Bower, A. F.; Ortiz, M., A three-dimensional analysis of crack trapping and bridging by tough particles, J. Mech. Phys. Solids, 28, 5, 815-858 (1991) · Zbl 0761.73083
[4] Bower, A. F.; Ortiz, M., The influence of grain size on the toughness of monolithic ceramics, ASME J. Eng. Mater. Technol., 115, 228-236 (1993)
[5] Charles, Y.; Hild, F., Crack arrest in ceramic/steel assemblies, Int. J. Fract., 15, 3, 251-272 (2002)
[6] Charles, Y.; Hild, F.; Roux, S., Long-term reliability of ceramicsthe issue of crack arrest, ASME J. Eng. Mater. Technol., 125, 333-340 (2003)
[7] Charles, Y., Hild, F., Roux, S., 2004. work in progress.; Charles, Y., Hild, F., Roux, S., 2004. work in progress.
[8] Chudnovsky, A.; Kunin, B., A probabilistic model of brittle crack formation, J. Appl. Phys., 62, 4124-4129 (1987)
[9] Curtin, W. A., Toughening in disordered brittle materials, Phys. Rev. B, 55, 11270-11276 (1997)
[10] Curtin, W. A., Stochastic damage evolution and failure in fiber-reinforced composites, Adv. Appl. Mech., 36, 164 (1998)
[11] Evans, A. G., Perspectives on the development of high-toughness ceramics, J. Am. Ceram. Soc., 73, 2, 187-206 (1990)
[12] Fisher, D. S., Sliding charge-density waves as a dynamic critical phenomenon, Phys. Rev. B, 31, 1396-1427 (1985)
[13] Freudenthal, A. M., Statistical approach to brittle fracture, (Liebowitz, H., Fracture (1968), Academic Press: Academic Press New York, USA), 591-619 · Zbl 0207.24802
[14] Gao, H.; Rice, J. R., A first order perturbation analysis of crack trapping by arrays of obstacles, ASME J. Appl. Mech., 56, 828-836 (1989) · Zbl 0729.73264
[15] Jeulin, D., Fracture statistics models and crack propagation in random media, Appl. Mech. Rev., 47, 1, 141-150 (1994)
[16] Kardar, M., Nonequilibrium dynamics of interfaces and lines, Phys. Rep., 301, 85-112 (1998)
[17] Krishnamurthy, S.; Tanguy, A.; Abry, P.; Roux, S., A stochastic description of extremal dynamics, Europhys. Lett., 51, 1-7 (2000)
[18] Lawn, B. R., Fracture of Brittle Solids (1993), Cambridge University Press: Cambridge University Press Cambridge, UK
[19] Le Doussal, P., Wiese, K.J., Chauve, P., 2002. Two-loop functional renormalization group theory of the depinning transition. Phys. Rev. B 66, 174201-1-34.; Le Doussal, P., Wiese, K.J., Chauve, P., 2002. Two-loop functional renormalization group theory of the depinning transition. Phys. Rev. B 66, 174201-1-34.
[20] Narayan, O.; Fisher, D. S., Threshold critical dynamics of driven interfaces in random media, Phys. Rev. B, 48, 7030-7042 (1993)
[21] Nattermann, T.; Stepanow, S.; Tang, L.-H.; Leschhorn, H., Dynamics of interface depinning in a disordered medium, J. Phys. II France, 2, 1483-1488 (1993)
[22] Ponton, C. B.; Rawlings, R. D., Vickers indentation fracture toughness test—Part 1—Review of literature and formulation of standardized indentation toughness equations, Mater. Sci. Technol., 5, 865-872 (1989)
[23] Ponton, C. B.; Rawlings, R. D., Vickers indentation fracture toughness test—Part 2—Application and evaluation of standardized indentation toughness equations, Mater. Sci. Technol., 5, 961-976 (1989)
[24] Ramanathan, S.; Fisher, D. S., Onset of propagation of planar cracks in heterogeneous media, Phys. Rev. B, 58, 6026-6046 (1998)
[25] Roux, S.; Vandembroucq, D.; Hild, F., Effective toughness of heterogeneous brittle materials, Eur. J. Mech. A/Solids, 22, 743-749 (2003) · Zbl 1032.74639
[26] Schmittbuhl, J.; Roux, S.; Vilotte, J.-P.; Måløy, K. J., Pinning of interfacial crackeffect of non-local interactions, Phys. Rev. Lett., 74, 1787-1790 (1995)
[27] Schmittbuhl, J.; Vilotte, J.-P.; Roux, S., Reliability of self-affine measurements, Phys. Rev. E, 51, 131-147 (1995)
[28] Skoe, R.; Vandembroucq, D.; Roux, S., Front propagation in random mediafrom extremal to activated dynamics, Int. J. Mod. Phys. C, 13, 751-757 (2002)
[29] Sornette, D., Critical Phenomena in Natural Sciences (2000), Springer: Springer Berlin, Germany · Zbl 0977.82001
[30] Tanguy, A.; Gounelle, M.; Roux, S., From individual to collective pinningeffect of long-range elastic interactions, Phys. Rev. E, 58, 1577-1590 (1998)
[31] Weibull, W., 1939. A statistical theory of the strength of materials. Report 151, Royal Swedish Institute of Engineering Research.; Weibull, W., 1939. A statistical theory of the strength of materials. Report 151, Royal Swedish Institute of Engineering Research.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.