×

Nonuniversality of critical exponents in a fractional quenched Kardar-Parisi-Zhang equation. (English) Zbl 1291.82089

Summary: In this article we address the problem of the depinning transition for driven interfaces in random media. We introduce a fractional Kardar-Parisi-Zhang equation with quenched noise, in which the normal diffusion term is replaced by a fractional Laplacian accounting for long-range interactions through quenched disorder. The critical values of the external driving force and nonlinear term coefficient evidently depend on the system size at the depinning transition. For a fixed value of the external driving force, the fractional order much determines the value of the nonlinear term coefficient that leads to a depinned interface. Near the depinning threshold, the critical exponent obtained numerically is nonuniversal, and weakly depends on the fractional order.

MSC:

82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics
82C27 Dynamic critical phenomena in statistical mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
35B33 Critical exponents in context of PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995) · Zbl 0838.58023 · doi:10.1017/CBO9780511599798
[2] Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215 (1995) · doi:10.1016/0370-1573(94)00087-J
[3] Alava, M.J., Nukala, P.K.V.V., Zapperi, S.: Statistical models of fracture. Adv. Phys. 55, 349 (2006) · doi:10.1080/00018730300741518
[4] Hinrichsen, H.: Nonequilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815 (2000) · doi:10.1080/00018730050198152
[5] Gruener, S., Sadjadib, Z., Hermesc, H.E., Kitykd, A.V., Knorra, K., Egelhaafc, S.U., Riegerb, H., Huber, P.: Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores. Proc. Natl. Acad. Sci. USA 109, 10245 (2012) · doi:10.1073/pnas.1119352109
[6] Blatter, G., Feigelman, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994) · doi:10.1103/RevModPhys.66.1125
[7] Altshuler, E., Johansen, T.H.: Colloquium: experiments in vortex avalanches. Rev. Mod. Phys. 76, 471 (2004) · doi:10.1103/RevModPhys.76.471
[8] Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.M.: Domain wall creep in epitaxial ferroelectric \[Pb(Zr_{0.2}0.2Ti_{0.8})0.8)O_33\] thin films. Phys. Rev. Lett. 89, 097601 (2002) · doi:10.1103/PhysRevLett.89.097601
[9] Durin, G., Zapperi, S.: The role of stationarity in magnetic crackling noise. J. Stat. Mech. 2006, P01002 (2006) · Zbl 1148.78006
[10] Gao, H., Rice, J.R.: A first order perturbation analysis of crack trapping by arrays of obstacles. J. Appl. Mech. 56, 828 (1989) · Zbl 0729.73264 · doi:10.1115/1.3176178
[11] Schmittbuhl, J., Roux, S., Vilotte, J.P., Maløy, K.J.: Interfacial crack pinning: effect of nonlocal interactions. Phys. Rev. Lett. 74, 1787 (1995) · doi:10.1103/PhysRevLett.74.1787
[12] Rosso, A., Krauth, W.: Roughness at the depinning threshold for a long-range elastic string. Phys. Rev. E 65, R025101 (2002) · doi:10.1103/PhysRevE.65.025101
[13] Ertas, D., Kardar, M.: Critical dynamics of contact line depinning. Phys. Rev. E 49, R2532 (1994) · doi:10.1103/PhysRevE.49.R2532
[14] Tanguy, A., Gounelle, M., Roux, S.: From individual to collective pinning: effect of long-range elastic interactions. Phys. Rev. E 58, 1577 (1998) · doi:10.1103/PhysRevE.58.1577
[15] Katzav, E., Adda-bedia, M.: Roughness of tensile crack fronts in heterogenous materials. Europhys. Lett. 76, 450 (2006) · Zbl 1159.35015 · doi:10.1209/epl/i2006-10273-7
[16] Bonamy, D., Bouchaud, E.: Failure of heterogeneous materials: a dynamic phase transition? Phys. Rep. 498, 1 (2011) · doi:10.1016/j.physrep.2010.07.006
[17] Parisi, G.: On surface growth in random media. Europhys. Lett. 17, 673 (1992) · doi:10.1209/0295-5075/17/8/002
[18] Makse, H.A., Amaral, L.A.N.: Scaling behavior of driven interfaces above the depinning transition. Europhys. Lett. 31, 379 (1995) · doi:10.1209/0295-5075/31/7/007
[19] Tang, L.H., Leschhorn, H.: Pinning by directed percolation. Phys. Rev. A 45, R8309 (1992) · doi:10.1103/PhysRevA.45.R8309
[20] Narayan, O., Fisher, D.S.: Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 48, 7030 (1993) · doi:10.1103/PhysRevB.48.7030
[21] Roux, S., Hansen, A.: Interface roughening and pinning. J. Phys. 1(4), 515 (1994)
[22] López, J.M., Rodríguez, M.A.: Interface dynamics at the depinning transition. J. Phys. I 7, 1191 (1997)
[23] Goh, K.I., Jeong, H., Kahng, B., Kim, D.: Depinning of an anisotropic interface in random media: the tilt effect. Phys. Rev. E 62, 2955 (2000) · doi:10.1103/PhysRevE.62.2955
[24] Ramasco, J., López, J.M., Rodríguez, M.A.: Interface depinning in the absence of an external driving force. Phys. Rev. E 64, 066109 (2001) · doi:10.1103/PhysRevE.64.066109
[25] Kim, J.M., Choi, H.: Depinning transition of the quenched Edwards-Wilkinson equation. J. Korean Phys. Soc. 48, 241 (2006)
[26] Song, H.S., Kim, J.M.: A discrete interface growth model for quenched impurities in d \[== 2 + 1\] dimensions. J. Stat. Mech. 2011, P09021 (2011)
[27] Family, F., Vicsek, T.: Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A 18, L75 (1985) · doi:10.1088/0305-4470/18/2/005
[28] Taloni, T., Chechkin, A., Klafter, J.: Generalized elastic model yields a fractional Langevin equation description. Phys. Rev. Lett. 104, 160602 (2010) · Zbl 1267.82103 · doi:10.1103/PhysRevLett.104.160602
[29] Ansari-Rad, M., Allaei, S.M.V., Sahimi, M.: Nonuniversality of roughness exponent of quasistatic fracture surfaces. Phys. Rev. E 85, 021121 (2012) · doi:10.1103/PhysRevE.85.021121
[30] Mann Jr, J.A., Woyczynski, W.A.: Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Physica A 291, 159 (2001) · Zbl 0972.82078 · doi:10.1016/S0378-4371(00)00467-2
[31] Katzav, E.: Growing surfaces with anomalous diffusion: results for the fractal Kardar-Parisi-Zhang equation. Phys. Rev. E 68, 031607 (2003) · doi:10.1103/PhysRevE.68.031607
[32] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[33] Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. Fract. Calc. Appl. Anal. 8, 323 (2005) · Zbl 1126.26009
[34] Katzav, E., Adda-bedia, M.: Stability and roughness of tensile cracks in disordered materials. Phys. Rev. E 88, 052402 (2013) · Zbl 1159.35015 · doi:10.1103/PhysRevE.88.052402
[35] Dickman, R., Muñoz, M.A.: Interface scaling in the contact process. Phys. Rev. E 62, 7632 (2000) · doi:10.1103/PhysRevE.62.7632
[36] Xia, H., Gang, T., Hao, D.P., Xun, Z.P.: Dynamics of surface roughening in the space-fractional Kardar-Parisi-Zhang growth: numerical results. J. Phys. A 45, 295001 (2012) · Zbl 1248.65093 · doi:10.1088/1751-8113/45/29/295001
[37] Katzav, E., Schwartz, M.: Exponent inequalities in dynamical systems. Phys. Rev. Lett. 107, 125701 (2011) · doi:10.1103/PhysRevLett.107.125701
[38] Katzav, E., Schwartz, M.: Dynamical inequalities in growth models. Europhys. Lett. 95, 66003 (2011) · doi:10.1209/0295-5075/95/66003
[39] Aarão Reis, F.D.A.: Numerical study of roughness distributions in nonlinear models of interface growth. Phys. Rev. E 72, 032601 (2005) · doi:10.1103/PhysRevE.72.032601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.