×

On \(U^\sigma\)-abundant semigroups. (English) Zbl 1259.20062

Let \(U\subseteq E(S)\) be a non-empty subset of idempotents of a semigroup \(S\). Define a relation \(\widetilde{\mathcal L}^U\) on \(S\) by setting \((a,b)\in \widetilde{\mathcal L}^U\) if and only if \(\{u\in U\mid au=a\}=\{u\in U\mid bu=b\}\). The relation \(\widetilde{\mathcal R}^U\) is defined dually. A semigroup \(S\) is called ‘\(U\)-semiabundant’ and denoted \((S,U)\) if any \(\widetilde{\mathcal L}^U\)-class and any \(\widetilde{\mathcal R}^U\)-class of \(S\) contain idempotents of \(U\) (a typical idempotent in the class containing element \(a\) is denoted by \(a^*\) and \(a^+\), respectively). A ‘\(U\)-semiabundant’ semigroup \((S,U)\) is called ‘\(U^\sigma\)-abundant’ if \(\widetilde{\mathcal L}^U\) is a right congruence, \(\widetilde{\mathcal R}^U\) is a left congruence on \((S,U)\) and \(x_1x_2\cdots x_n=x_{\alpha(1)}x_{\alpha(2)}\cdots x_{\alpha(n)}\) for any finite subset \(\{x_1,x_2,\dots,x_n\}\subseteq U\) and for any permutation \(\alpha\) on \(n\) letters.
Let \(T(Y)\) be an Ehresmann semigroup with \(Y\) a subsemilattice, and let \(L=\mathcal S(Y;L_\alpha;\varphi_{\alpha,\beta})\) and \(R=\mathcal S(Y;R_\alpha;\psi_{\alpha,\beta})\) be a strong semilattice of left zero bands \(L_\alpha\) and of right zero bands \(R_\alpha\), respectively.
The authors define the ‘quasi-spined product’ \(Q(L,T(Y),R;Y)\) of \(L\), \(T(Y)\) and \(R\), and prove that a semigroup \((S,U)\) is a \(U^\sigma\)-abundant semigroup if and only if \((S,U)\) is isomorphic to the quasi-spined product \(Q(L,T(Y),R;Y)\), where \(L\) is a left normal band, \(T(Y)\) is an Ehresmann semigroup and \(R\) is a right normal band. It turns out that the category of \(U^\sigma\)-abundant semigroups \((S,U)\) with admissible homomorphisms is isomorphic to the category of Ehresmann semigroups \((S,U)/\delta\) with admissible homomorphisms, where \(\delta\) is the minimum Ehresmann congruence on \((S,U)\).

MSC:

20M10 General structure theory for semigroups
20M05 Free semigroups, generators and relations, word problems
20M50 Connections of semigroups with homological algebra and category theory

References:

[1] DOI: 10.1016/S0304-3975(00)00382-0 · Zbl 0988.18003 · doi:10.1016/S0304-3975(00)00382-0
[2] DOI: 10.1017/S0308210500012646 · Zbl 0501.20043 · doi:10.1017/S0308210500012646
[3] DOI: 10.1006/jabr.1999.7871 · Zbl 0940.20064 · doi:10.1006/jabr.1999.7871
[4] DOI: 10.1007/s002330010054 · Zbl 0998.20051 · doi:10.1007/s002330010054
[5] DOI: 10.1007/BF02676614 · Zbl 0885.20038 · doi:10.1007/BF02676614
[6] DOI: 10.1007/s10012-000-0041-6 · Zbl 0986.20056 · doi:10.1007/s10012-000-0041-6
[7] Howie J. M., An Introduction to Semigroup Theory (1976) · Zbl 0355.20056
[8] Howie J. M., Fundamentals of Semigroup Theory (1995)
[9] DOI: 10.1017/S0013091500028856 · Zbl 0668.20049 · doi:10.1017/S0013091500028856
[10] DOI: 10.1016/0021-8693(91)90242-Z · Zbl 0747.18007 · doi:10.1016/0021-8693(91)90242-Z
[11] DOI: 10.1007/s00233-004-0155-8 · Zbl 1110.20049 · doi:10.1007/s00233-004-0155-8
[12] DOI: 10.2140/pjm.1967.21.371 · Zbl 0154.01603 · doi:10.2140/pjm.1967.21.371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.