×

Strolling along gauge theory vacua. (English) Zbl 1381.81081

Summary: We consider classical, pure Yang-Mills theory in a box. We show how a set of static electric fields that solve the theory in an adiabatic limit correspond to geodesic motion on the space of vacua, equipped with a particular Riemannian metric that we identify. The vacua are generated by spontaneously broken global gauge symmetries, leading to an infinite number of conserved momenta of the geodesic motion. We show that these correspond to the soft multipole charges of Yang-Mills theory.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81R40 Symmetry breaking in quantum theory
83C10 Equations of motion in general relativity and gravitational theory
35Q51 Soliton equations

References:

[1] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[2] A. Seraj, Multipole charge conservation and implications on electromagnetic radiation, JHEP06 (2017) 080 [arXiv:1610.02870] [INSPIRE]. · Zbl 1380.81448 · doi:10.1007/JHEP06(2017)080
[3] A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP07 (2014) 151 [arXiv:1308.0589] [INSPIRE]. · Zbl 1333.81273 · doi:10.1007/JHEP07(2014)151
[4] G. Barnich and P.-H. Lambert, Einstein-Yang-Mills theory: Asymptotic symmetries, Phys. Rev.D 88 (2013) 103006 [arXiv:1310.2698] [INSPIRE].
[5] M. Campiglia and R. Eyheralde, Asymptotic U(1) charges at spatial infinity, arXiv:1703.07884 [INSPIRE]. · Zbl 1383.81127
[6] E.J. Weinberg and P. Yi, Magnetic Monopole Dynamics, Supersymmetry and Duality, Phys. Rept.438 (2007) 65 [hep-th/0609055] [INSPIRE]. · doi:10.1016/j.physrep.2006.11.002
[7] E.J. Weinberg, Classical solutions in quantum field theory, Cambridge Monographs on Mathematical Physics. Cambridge University Press, (2015).
[8] M.F. Atiyah and N.J. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, M.B. Porter Lectures, Princeton University Press (1988). · Zbl 0671.53001
[9] N.S. Manton, A Remark on the Scattering of BPS Monopoles, Phys. Lett.B 110 (1982) 54 [INSPIRE]. · Zbl 1190.81087 · doi:10.1016/0370-2693(82)90950-9
[10] B. Julia and A. Zee, Poles with Both Magnetic and Electric Charges in Nonabelian Gauge Theory, Phys. Rev.D 11 (1975) 2227 [INSPIRE].
[11] O. Lechtenfeld and A.D. Popov, Yang-Mills moduli space in the adiabatic limit, J. Phys.A 48 (2015) 425401 [arXiv:1505.05448] [INSPIRE]. · Zbl 1326.81129
[12] A.D. Popov, Loop groups in Yang-Mills theory, Phys. Lett.B 748 (2015) 439 [arXiv:1505.06634] [INSPIRE]. · Zbl 1345.81082 · doi:10.1016/j.physletb.2015.07.041
[13] O. Lechtenfeld and A.D. Popov, Supermembrane limit of Yang-Mills theory, J. Math. Phys.57 (2016) 023520 [arXiv:1508.06325] [INSPIRE]. · Zbl 1332.81138 · doi:10.1063/1.4942186
[14] O. Lechtenfeld and A.D. Popov, Superstring limit of Yang-Mills theories, Phys. Lett.B 762 (2016) 309 [arXiv:1608.05331] [INSPIRE]. · Zbl 1390.81451 · doi:10.1016/j.physletb.2016.09.032
[15] V.I. Arnol’d, Mathematical methods of classical mechanics, vol. 60, Springer Science & Business Media, (2013).
[16] D.M.A. Stuart, Analysis of the adiabatic limit for solitons in classical field theory, Proc. Roy. Soc. Lond.A463 (2007) 2753 [INSPIRE]. · Zbl 1130.70013 · doi:10.1098/rspa.2007.0130
[17] G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP05 (2010) 062 [arXiv:1001.1541] [INSPIRE]. · Zbl 1287.83043 · doi:10.1007/JHEP05(2010)062
[18] G. Compère, P. Mao, A. Seraj and M.M. Sheikh-Jabbari, Symplectic and Killing symmetries of AdS3gravity: holographic vs boundary gravitons, JHEP01 (2016) 080 [arXiv:1511.06079] [INSPIRE]. · Zbl 1388.83209 · doi:10.1007/JHEP01(2016)080
[19] L. Castellani, L.J. Romans and N.P. Warner, Symmetries of Coset Spaces and Kaluza-Klein Supergravity, Annals Phys.157 (1984) 394 [INSPIRE]. · doi:10.1016/0003-4916(84)90066-6
[20] H.H. Homeier and E.O. Steinborn, Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients, J. Molec. Struc.368 (1996) 31. · doi:10.1016/S0166-1280(96)90531-X
[21] A. Arvanitogeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, vol. 22, American Mathematical Soc., (2003). · Zbl 1045.53001
[22] T. Andrade and D. Marolf, Asymptotic Symmetries from finite boxes, Class. Quant. Grav.33 (2016) 015013 [arXiv:1508.02515] [INSPIRE]. · Zbl 1331.83063 · doi:10.1088/0264-9381/33/1/015013
[23] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP05 (2015) 151 [arXiv:1401.7026] [INSPIRE]. · Zbl 1388.83261 · doi:10.1007/JHEP05(2015)151
[24] G. Compère and A. Fiorucci, Asymptotically flat spacetimes with BMS3symmetry, arXiv:1705.06217 [INSPIRE]. · Zbl 1380.83180
[25] C. Troessaert, The BMS4 algebra at spatial infinity, arXiv:1704.06223 [INSPIRE]. · Zbl 1390.83074
[26] S. Prohazka, J. Salzer and F. Schöller, Linking Past and Future Null Infinity in Three Dimensions, Phys. Rev.D 95 (2017) 086011 [arXiv:1701.06573] [INSPIRE].
[27] M. Mirbabayi and M. Simonović, Weinberg Soft Theorems from Weinberg Adiabatic Modes, arXiv:1602.05196 [INSPIRE].
[28] G. Barnich, The Coulomb solution as a coherent state of unphysical photons, Gen. Rel. Grav.43 (2011) 2527 [arXiv:1001.1387] [INSPIRE]. · Zbl 1225.83038 · doi:10.1007/s10714-010-0984-6
[29] W. Mück, Photons in a Ball, Eur. Phys. J.C 75 (2015) 585 [arXiv:1510.04490] [INSPIRE]. · doi:10.1140/epjc/s10052-015-3811-0
[30] M. Bañados, Three-dimensional quantum geometry and black holes, hep-th/9901148 [INSPIRE]. · Zbl 1162.83342
[31] M.M. Sheikh-Jabbari and H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS3geometries, Eur. Phys. J.C 76 (2016) 493 [arXiv:1603.05272] [INSPIRE]. · doi:10.1140/epjc/s10052-016-4326-z
[32] G. Compère and J. Long, Vacua of the gravitational field, JHEP07 (2016) 137 [arXiv:1601.04958] [INSPIRE]. · Zbl 1390.83185 · doi:10.1007/JHEP07(2016)137
[33] B. Oblak, BMS Particles in Three Dimensions, arXiv:1610.08526 [INSPIRE]. · Zbl 1379.81011
[34] A. Strominger and A. Zhiboedov, Superrotations and Black Hole Pair Creation, Class. Quant. Grav.34 (2017) 064002 [arXiv:1610.00639] [INSPIRE]. · Zbl 1368.83047 · doi:10.1088/1361-6382/aa5b5f
[35] W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett.114 (2015) 111603 [arXiv:1412.1895] [INSPIRE]. · doi:10.1103/PhysRevLett.114.111603
[36] W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP09 (2016) 102 [arXiv:1601.04744] [INSPIRE]. · Zbl 1390.83016 · doi:10.1007/JHEP09(2016)102
[37] M. Geiller, Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, arXiv:1703.04748 [INSPIRE]. · Zbl 1373.81284
[38] B. Oblak, Berry Phases on Virasoro Orbits, arXiv:1703.06142 [INSPIRE]. · Zbl 1383.81249
[39] S. Weinberg, Adiabatic modes in cosmology, Phys. Rev.D 67 (2003) 123504 [astro-ph/0302326] [INSPIRE].
[40] K. Hinterbichler, L. Hui and J. Khoury, An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology, JCAP01 (2014) 039 [arXiv:1304.5527] [INSPIRE]. · doi:10.1088/1475-7516/2014/01/039
[41] M.S. Narasimhan and T.R. Ramadas, Geometry of SU(2) Gauge Fields, Commun. Math. Phys.67 (1979) 121 [INSPIRE]. · Zbl 0418.53029 · doi:10.1007/BF01221361
[42] O. Babelon and C.M. Viallet, On the Riemannian Geometry of the Configuration Space of Gauge Theories, Commun. Math. Phys.81 (1981) 515 [INSPIRE]. · Zbl 0495.58003 · doi:10.1007/BF01208272
[43] M. Grabiak, B. Müller and W. Greiner, Geometrical Properties of Gauge Theories, Annals Phys.172 (1986) 213 [INSPIRE]. · Zbl 0611.53078 · doi:10.1016/0003-4916(86)90025-4
[44] J. Fuchs, M.G. Schmidt and C. Schweigert, On the configuration space of gauge theories, Nucl. Phys.B 426 (1994) 107 [hep-th/9404059] [INSPIRE]. · Zbl 1049.81556 · doi:10.1016/0550-3213(94)90128-7
[45] P. Orland, The metric on the space of Yang-Mills configurations, hep-th/9607134 [INSPIRE]. · Zbl 0812.58106
[46] D. Salamon, Notes on flat connections and the loop group, Preprint, University of Warwick, U.K. (1998).
[47] S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett.116 (2016) 231301 [arXiv:1601.00921] [INSPIRE]. · doi:10.1103/PhysRevLett.116.231301
[48] H. Afshar, D. Grumiller and M.M. Sheikh-Jabbari, Black Hole Horizon Fluffs: Near Horizon Soft Hairs as Microstates of Three Dimensional Black Holes, arXiv:1607.00009 [INSPIRE]. · Zbl 1381.83050
[49] R. Bousso and M. Porrati, Soft Hair as a Soft Wig, arXiv:1706.00436 [INSPIRE]. · Zbl 1380.83126
[50] R. Bousso and M. Porrati, Observable Supertranslations, arXiv:1706.09280 [INSPIRE]. · Zbl 0995.81054
[51] O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital.B 07 (1991) 189. · Zbl 0731.53046
[52] J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys.31 (1990) 725 [INSPIRE]. · Zbl 0704.70013 · doi:10.1063/1.528801
[53] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[54] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[55] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys.B 633 (2002) 3 [hep-th/0111246] [INSPIRE]. · Zbl 0995.81054 · doi:10.1016/S0550-3213(02)00251-1
[56] A. Seraj, Conserved charges, surface degrees of freedom and black hole entropy, arXiv:1603.02442 [INSPIRE].
[57] N. Woodhouse, Geometric Quantization, Oxford University Press, (1980). · Zbl 0458.58003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.