×

Bifurcations and monodromy of the axially symmetric \(1:1:-2\) resonance. (English) Zbl 1469.37042

Summary: We consider integrable Hamiltonian systems in three degrees of freedom near an elliptic equilibrium in \(1:1:-2\) resonance. The integrability originates from averaging along the periodic motion of the quadratic part and an imposed rotational symmetry about the vertical axis. Introducing a detuning parameter we find a rich bifurcation diagram, containing three parabolas of Hamiltonian Hopf bifurcations that join at the origin. We describe the monodromy of the resulting ramified 3-torus bundle as variation of the detuning parameter lets the system pass through \(1:1:-2\) resonance.

MSC:

37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
37J39 Relations of finite-dimensional Hamiltonian and Lagrangian systems with topology, geometry and differential geometry (symplectic geometry, Poisson geometry, etc.)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests

References:

[1] Abraham, R.; Marsden, J. E., Foundations of Mechanics (1978), Benjamin · Zbl 0393.70001
[2] Arnol’d, V. I.; Kozlov, V. V.; Neishtadt, A. I., Mathematical aspects of classical and celestial mechanics, (Arnol’d, V. I., Dynamical Systems III (1988), Springer)
[3] Bertotti, M. L., Localization of closed orbits of nonlinear Hamiltonian systems with \(1, - 2\) resonance near an equilibrium, Boll. Unione Mat. Ital.(7), 1-B, 965-978 (1987) · Zbl 0639.70010
[4] Bridges, T. J., Bifurcation of periodic solutions near a collision of eigenvalues of opposite signature, Math. Proc. Cambridge Philos. Soc., 108, 575-601 (1990) · Zbl 0722.58032
[5] Bridges, T. J., Stability of periodic solutions near a collision of eigenvalues of opposite signature, Math. Proc. Cambridge Philos. Soc., 109, 375-403 (1991) · Zbl 0731.58028
[6] Broer, H. W.; Cushman, R. H.; Fassò, F.; Takens, F., Geometry of kam tori for nearly integrable Hamiltonian systems, Ergodic Theory Dynam. Systems, 27, 725-741 (2007) · Zbl 1131.37057
[7] Christov, O., Non-integrability of first order resonances of Hamiltonian systems in three degrees of freedom, Celestial Mech. Dynam. Astronom., 112, 147-167 (2012) · Zbl 1266.70038
[8] Cushman, R. H.; Bates, L. M., Global Aspects of Classical Integrable Systems (1997), Birkhäuser · Zbl 0882.58023
[9] Dell’Antonio, G. F.; D’Onofrio, B. M., On the number of periodic solutions of an Hamiltonian system near an equilibrium point, Boll. Unione Mat. Ital.(6), 3B, 809-835 (1984) · Zbl 0564.70023
[10] Duistermaat, J. J., Non-integrability of the 1:1:2-resonance, Ergodic Theory Dynam. Systems, 4, 553-568 (1984) · Zbl 0537.58026
[11] Efstathiou, K.; Broer, H. W., Uncovering fractional monodromy, Comm. Math. Phys., 324, 549-588 (2013) · Zbl 1343.37040
[12] Efstathiou, K.; Martynchuk, N., Monodromy of Hamiltonian systems with complexity 1 torus actions, J. Geom. Phys., 115, 104-115 (2017) · Zbl 1371.53078
[13] Gross, M., Special Lagrangian fibrations. I. Topology, (Saito, M.-H.; Shimizu, Y.; Ueno, K., Integrable Systems and Algebraic Geometry, Kobe/Kyoto 1997 (1998), World Scientific), 156-193 · Zbl 0964.14033
[14] Hanßmann, H., Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems — Results and Examples, LNM (2007), Springer · Zbl 1120.37036
[15] Hanßmann, H.; Hoveijn, I., The 1: 1 resonance in Hamiltonian systems, J. Differential Equations, 266, 11, 6963-6984 (2018) · Zbl 1409.37061
[16] Hanßmann, H.; van der Meer, J. C., On the Hamiltonian Hopf bifurcations in the \(3 D\) Hénon-Heiles family, J. Dynam. Differential Equations, 14, 675-695 (2002) · Zbl 1035.37038
[17] Hanßmann, H.; van der Meer, J. C., Algebraic methods for determining Hamiltonian Hopf bifurcations in three-degree-of-freedom systems, J. Dynam. Differential Equations, 17, 3, 453-474 (2005) · Zbl 1078.37041
[18] Mather, J. N., Differentiable invariants, Topology, 16, 145-155 (1977) · Zbl 0376.58002
[19] J.C. van der Meer, Degenerate Hamiltonian Hopf bifurcations, in: L.M. Bates, D.L. Rod (Eds.), Conservative systems and quantum chaos, Waterloo 1992, Fields Institute Communications, vol. 8, AMS, 1996, pp. 159-176.; J.C. van der Meer, Degenerate Hamiltonian Hopf bifurcations, in: L.M. Bates, D.L. Rod (Eds.), Conservative systems and quantum chaos, Waterloo 1992, Fields Institute Communications, vol. 8, AMS, 1996, pp. 159-176. · Zbl 0853.58053
[20] van der Meer, J. C., The Hamiltonian Hopf bifurcation, LNM (1985), Springer · Zbl 0585.58019
[21] Rink, B., A Cantor set of tori with monodromy near a focus-focus singularity, Nonlinearity, 17, 347-356 (2004) · Zbl 1079.37056
[22] Sadovskií, D. A.; Zhilinskií, B. I., Hamiltonian systems with detuned 1:1:2 resonance: manifestation of bidromy, Ann. Physics, 322, 164-200 (2007) · Zbl 1106.81082
[23] Sanders, J. A.; Verhulst, F.; Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci. (2007), Springer · Zbl 1128.34001
[24] Schwarz, G. W., Smooth functions invariant under the action of a compact Lie group, Topology, 14, 63-68 (1975) · Zbl 0297.57015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.