×

Zappa-Szép products of semigroups and their \(C^\ast\)-algebras. (English) Zbl 1286.22002

Summary: Zappa-Szép products of semigroups provide a rich class of examples of semigroups that include the self-similar group actions of Nekrashevych. We use Li’s construction of semigroup \(C^\ast\)-algebras to associate a \(C^\ast\)-algebra to Zappa-Szép products and give an explicit presentation of the algebra. We then define a quotient \(C^\ast\)-algebra that generalises the Cuntz-Pimsner algebras for self-similar actions. We indicate how known examples, previously viewed as distinct classes, fit into our unifying framework. We specifically discuss the Baumslag-Solitar groups, the binary adding machine, the semigroup \(\mathbb N \rtimes \mathbb N^{\times}\), and the \(ax+b\)-semigroup \(\mathbb Z \rtimes \mathbb Z^{\times}\).

MSC:

22A30 Other topological algebraic systems and their representations
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
43A07 Means on groups, semigroups, etc.; amenable groups
46L05 General theory of \(C^*\)-algebras

References:

[1] Brin, M. G., On the Zappa-Szép product, Comm. Algebra, 33, 393-424 (2005) · Zbl 1078.20062
[2] Brownlowe, N.; An Huef, A.; Laca, M.; Raeburn, I., Boundary quotients of the Toeplitz algebra of the affine semigroup over the natural numbers, Ergodic Theory Dynam. Systems, 32, 35-62 (2012) · Zbl 1252.46069
[3] Coburn, L. A., The \(C^\ast \)-algebra generated by an isometry, I, Bull. Amer. Math. Soc., 73, 722-726 (1967) · Zbl 0153.16603
[4] Crisp, J.; Laca, M., Boundary quotients and ideals of Toeplitz \(C^\ast \)-algebras of Artin groups, J. Funct. Anal., 242, 127-156 (2007) · Zbl 1112.46051
[5] Cuntz, J., \(C^\ast \)-algebras associated with the \(a x + b\)-semigroup over \(N, (K\)-Theory and Noncommutative Geometry. \(K\)-Theory and Noncommutative Geometry, Valladolid, 2006 (2008), European Math. Soc.), 201-215 · Zbl 1162.46036
[6] Cuntz, J.; Deninger, C.; Laca, M., \(C^\ast \)-algebras of Toeplitz type associated with algebraic number fields, Math. Ann., 355, 1383-1423 (2013) · Zbl 1273.22008
[7] Cuntz, J.; Li, X., The regular \(C^\ast \)-algebra of an integral domain, (Quanta of Maths. Quanta of Maths, Clay Math. Proc., vol. 11 (2010), American Mathematical Society: American Mathematical Society Providence, RI), 149-170 · Zbl 1219.46059
[8] Davidson, K. R.; Power, S. C.; Yang, D., Dilation theory for rank 2 graph algebras, J. Operator Theory, 63, 245-270 (2010) · Zbl 1217.47140
[9] Davidson, K. R.; Yang, D., Periodicity in rank 2 graph algebras, Canad. J. Math., 61, 1239-1261 (2009) · Zbl 1177.47087
[10] Douglas, R. G., On the \(C^\ast \)-algebra of a one-parameter semigroup of isometries, Acta Math., 128, 143-151 (1972) · Zbl 0232.46063
[11] Grigorchuk, R. I., On Burnside’s problem on periodic groups, Funct. Anal. Appl., 14, 41-43 (1980) · Zbl 0595.20029
[12] Katsura, T., A class of \(C^\ast \)-algebras generalizing both graph algebras and homeomorphism \(C^\ast \)-algebras. IV. Pure infiniteness, J. Funct. Anal., 254, 1161-1187 (2008) · Zbl 1143.46034
[13] Kunze, M., Zappa products, Acta Math. Hungar., 41, 225-239 (1983) · Zbl 0538.20033
[14] Laca, M.; Raeburn, I., Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math., 225, 643-688 (2010) · Zbl 1203.46045
[15] Laca, M.; Raeburn, I.; Ramagge, J.; Whittaker, M. F., Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions · Zbl 1305.46059
[16] Larsen, N. S.; Li, X., The 2-adic ring \(C^\ast \)-algebra of the integers and its representations, J. Funct. Anal., 262, 1392-1426 (2012) · Zbl 1242.46079
[17] Lawson, M. V., A correspondence between a class of semigroups and self-similar group actions. I, Semigroup Forum, 76, 489-517 (2008) · Zbl 1156.20051
[18] Li, X., Semigroup \(C^\ast \)-algebras and amenability of semigroups, J. Funct. Anal., 262, 4302-4340 (2012) · Zbl 1243.22006
[19] Lyndon, R. C.; Schupp, P. E., Combinatorial Group Theory, Ergeb. Math. Ihrer Grenzgeb., vol. 89 (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0368.20023
[20] Murphy, G. J., Ordered groups and Toeplitz algebras, J. Operator Theory, 18, 303-326 (1987) · Zbl 0656.47020
[21] Nekrashevych, V., Cuntz-Pimsner algebras of group actions, J. Operator Theory, 52, 223-249 (2004) · Zbl 1447.46045
[22] Nekrashevych, V., Self-similar Groups, Math. Surveys Monogr., vol. 117 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 1087.20032
[23] Nekrashevych, V., \(C^\ast \)-algebras and self-similar groups, J. Reine Angew. Math., 630, 59-123 (2009) · Zbl 1175.46048
[24] Nica, A., \(C^\ast \)-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory, 27, 17-52 (1992) · Zbl 0809.46058
[25] Robertson, D. I.; Sims, A., Simplicity of \(C^\ast \)-algebras associated to higher-rank graphs, Bull. Lond. Math. Soc., 39, 337-344 (2007) · Zbl 1125.46045
[26] Sims, A.; Yeend, T., \(C^\ast \)-algebras associated to product systems of Hilbert bimodules, J. Operator Theory, 64, 349-376 (2010) · Zbl 1240.46080
[27] Spielberg, J., \(C^\ast \)-algebras for categories of paths associated to the Baumslag-Solitar groups, J. Lond. Math. Soc., 86, 728-754 (2012) · Zbl 1264.46040
[28] Szép, J., On factorisable, not simple groups, Acta Univ. Szeged Sect. Sci. Math., 13, 239-241 (1950) · Zbl 0039.25503
[29] Szép, J., Über eine neue Erweiterung von Ringen. I, Acta Sci. Math. (Szeged), 19, 51-62 (1958) · Zbl 0084.26301
[30] Szép, J., Sulle strutture fattorizzabili, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 32, 649-652 (1962) · Zbl 0146.25202
[31] Zappa, G., Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, (Atti Secondo Congresso Un. Mat. Ital.. Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940 (1942), Edizioni Cremonense: Edizioni Cremonense Rome), 119-125 · JFM 68.0037.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.