×

Tame actions of group schemes: Integrals and slices. (English) Zbl 0907.14021

Let \(S= \text{Spec} (R)\) be an affine scheme, let \(G= \text{Spec} (A)\) be an affine group scheme and \(X= \text{Spec} (B)\) be an affine \(S\)-scheme. An action \((X,G)\) of \(G\) on \(X\) corresponding to a coaction \(B \to B \otimes_R A\) is tame if there is an \(A\)-comodule map \(\alpha: A \to B\) such that \(\alpha(1_A)= 1_B\), i. e. a total integral in the sense of Y. Doi [Commun. Algebra 13, 2137-2159 (1985; Zbl 0576.16004)]. The main part of this groundbreaking paper is devoted to three results.
1. Let \(I\) be the module of integrals of \(A^D\), the dual of \(A\), and \(B^A\) the ring of (co)invariants of \(B\). If \(A\) and \(B\) are locally free over \(R\), then the action \((X,G)\) is tame iff \(IB= B^A\), that is, \(B\) is a tame \(A^D\)-module algebra in the sense of L. N. Childs and S. Hurley [Trans. Am. Math. Soc. 298, 763-778 (1986; Zbl 0609.16005)]. Thus for \(B, R\) rings of integers of a Galois extension \(L/K\) of number fields with Galois group \(\Gamma\) and \(A= R\Gamma^D\), \((G, X)\) is tame iff the trace map \(B \to R\) is surjective, iff \(L/K\) is tamely ramified. Thus the authors’ notion of tame action greatly extends the classical number-theoretic notion of tameness.
2. A tame action \((X, G)\) always admits a universal quotient in the category of schemes, and that quotient is affine. As an example shows, quotients of actions by finite groups are not always universal.
3. If \(R\) is Noetherian and \(G\) is commutative, finite and flat, then a tame action \((X, G)\) admits flat slices. That is, at each \(y \in \text{Spec} (X/G)\) there is a flat morphism \(Y' \to Y\) containing \(y\) in its image and a closed subgroup \(H\) of \(G\) stabilizing some point \(x\) of \(X\) over \(y\), and a \(Y'\)-scheme \(Z\) with an \(H\)-action, so that \(Y'= Z/H_{(Y')}\), \(H_{(Y')}\) is diagonalizable, and \((X_{(Y')}, G_{(Y')})\) is induced from \((Z, H_{(Y')})\). In fact, tame actions, with the same hypotheses on \(R\) and \(G\), can be characterized as actions with universal quotients such that after a faithfully flat base change the action is induced from an action of a diagonalizable group. This result extends the étale slice theorem of D. Luna [Bull. Soc. Math. Fr., Suppl., Mém. 33, 81-105 (1973; Zbl 0286.14014)], and relates the authors’ notion of tameness to that of A. Grothendieck and J. P. Murre [“The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme”, Lect. Notes Math. 208 (1971; Zbl 0216.33001)]: Locally a tame action looks like a cover which is tame with respect to a divisor with normal crossings.
The paper concludes by obtaining an equivariant Euler characteristic homomorphism for sheaves equipped with a tame action by a finite flat group, generalizing papers by T. Chinburg [Ann. Math., II. Ser. 139, No. 2, 443-490 (1994; Zbl 0828.14007)] and by T. Chinburg and B. Erez [Astérisque 209, 179-194 (1992; Zbl 0796.11051)] and applying that Euler characteristic map to reinterpret the class invariant homomorphism from the group of \(K\)-rational points of an elliptic curve \(E\) to the class group of \(A^D\): Here \(K\) is a number field with ring of integers \(R\), \(a \in \text{End}(E)\) and \(G= \text{Spec}(A)\) is the \(R\)-group scheme of \(a\)-torsion points on the Néron model of \(E\). For earlier descriptions of this map see P. Cassou-Noguès and M. J. Taylor [J. Théor. Nombres Bordx. 7, 307-331 (1995; Zbl 0852.11066)], M. J. Taylor in: Group rings and class groups, Notes Talks DMV-Semin., Günzburg 1990, DMV Semin. 18, 153-210 (1992; Zbl 0811.11068)] and A. Agboola [J. Théor. Nombres Bordx. 6, No. 2, 273-280 (1994; Zbl 0833.11055)]. These results are the first in a general program to study invariants attached to tame actions of group schemes.

MSC:

14L30 Group actions on varieties or schemes (quotients)
14L24 Geometric invariant theory
19L47 Equivariant \(K\)-theory
14M17 Homogeneous spaces and generalizations
14G05 Rational points
14H52 Elliptic curves
11G05 Elliptic curves over global fields
55S91 Equivariant operations and obstructions in algebraic topology
Full Text: DOI

References:

[1] E. Abe, Hopf algebras , Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge, 1980. · Zbl 0476.16008
[2] A. Agboola, A geometric description of the class-invariant homomorphism , · Zbl 0833.11055 · doi:10.5802/jtnb.115
[3] S. Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1 , Sur les groupes algébriques, Soc. Math. France, Paris, 1973, 5-79. Bull. Soc. Math. France, Mém. 33. · Zbl 0286.14001
[4] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra , Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. · Zbl 0175.03601
[5] P. Bardsley and R. W. Richardson, Étale slices for algebraic transformation groups in characteristic \(p\) , Proc. London Math. Soc. (3) 51 (1985), no. 2, 295-317. · Zbl 0604.14037 · doi:10.1112/plms/s3-51.2.295
[6] A. D. Barnard, Commutative rings with operators (Galois theory and ramification) , Proc. London Math. Soc. (3) 28 (1974), 274-290. · Zbl 0279.13005 · doi:10.1112/plms/s3-28.2.274
[7] H. Bass, Algebraic group actions on affine spaces , Group actions on rings (Brunswick, Maine, 1984), Contemp. Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 1-23. · Zbl 0587.14031
[8] P. Berthelot, et al., Théorie des intersections et théorème de Riemann-Roch , Springer-Verlag, Berlin, 1971. · Zbl 0218.14001
[9] N. Bourbaki, Commutative algebra. Chapters 1-7 , Elements of Mathematics, Springer-Verlag, Berlin, 1989. · Zbl 0666.13001
[10] P. Cassou-Noguès and M. J. Taylor, Structures galoisiennes et courbes elliptiques , to appear in J. Théor. Nombres Bordeaux 7 (1995), Numéro Spécial, Journées Arithmetiques 1993. · Zbl 0852.11066 · doi:10.5802/jtnb.145
[11] L. N. Childs, Taming wild extensions with Hopf algebras , Trans. Amer. Math. Soc. 304 (1987), no. 1, 111-140. JSTOR: · Zbl 0632.12013 · doi:10.2307/2000707
[12] L. N. Childs and S. Hurley, Tameness and local normal bases for objects of finite Hopf algebras , Trans. Amer. Math. Soc. 298 (1986), no. 2, 763-778. · Zbl 0609.16005 · doi:10.2307/2000648
[13] T. Chinburg, Galois structure of de Rham cohomology of tame covers of schemes , Ann. of Math. (2) 139 (1994), no. 2, 443-490. JSTOR: · Zbl 0828.14007 · doi:10.2307/2946586
[14] T. Chinburg and B. Erez, Equivariant Euler-Poincaré characteristics and tameness , Astérisque (1992), no. 209, 13, 179-194. · Zbl 0796.11051
[15] E. Cline, B. Parshall, and L. Scott, Induced modules and affine quotients , Math. Ann. 230 (1977), no. 1, 1-14. · Zbl 0378.20033 · doi:10.1007/BF01420572
[16] E. Cline, B. Parshall, and L. Scott, A Mackey imprimitivity theory for algebraic groups , Math. Z. 182 (1983), no. 4, 447-471. · Zbl 0537.14029 · doi:10.1007/BF01215476
[17] M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs , Masson & Cie, Éditeur, Paris, 1970. · Zbl 0203.23401
[18] Y. Doi, Algebras with total integrals , Comm. Algebra 13 (1985), no. 10, 2137-2159. · Zbl 0576.16004
[19] Y. Doi, Hopf extensions of algebras and Maschke type theorems , Israel J. Math. 72 (1990), no. 1-2, 99-108. · Zbl 0731.16025 · doi:10.1007/BF02764613
[20] Y. Doi and M. Takeuchi, Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action, and Azumaya algebras , J. Algebra 121 (1989), no. 2, 488-516. · Zbl 0675.16004 · doi:10.1016/0021-8693(89)90079-3
[21] A. Fröhlich, Local fields , Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 1-41.
[22] 1 A. Grothendieck, M. Artin, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos , Springer-Verlag, Berlin, 1972. · Zbl 0234.00007 · doi:10.1007/BFb0081551
[23] 2 A. Grothendieck, M. Artin, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 2 , Springer-Verlag, Berlin, 1972. · Zbl 0237.00012 · doi:10.1007/BFb0061319
[24] 3 A. Grothendieck, M. Artin, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 3 , Springer-Verlag, Berlin, 1973. · Zbl 0245.00002 · doi:10.1007/BFb0070714
[25] 1 A. Grothendieck and M. Demazure, Schémas en groupes. I: Propriétés générales des schémas en groupes , Lecture Notes in Mathematics, vol. 151, Springer-Verlag, Berlin, 1970. · Zbl 0207.51401 · doi:10.1007/BFb0058993
[26] 2 A. Grothendieck and M. Demazure, Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux , Lecture Notes in Mathematics, vol. 152, Springer-Verlag, Berlin, 1962/1964. · Zbl 0209.24201 · doi:10.1007/BFb0059005
[27] 3 A. Grothendieck and M. Demazure, Schémas en groupes. III: Structure des schémas en groupes réductifs , Lecture Notes in Mathematics, vol. 153, Springer-Verlag, Berlin, 1962/1964. · Zbl 0212.52810 · doi:10.1007/BFb0059027
[28] 1 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I , Inst. Hautes Études Sci. Publ. Math. (1961), no. 11, 167. · Zbl 0118.36206 · doi:10.1007/BF02684778
[29] 2 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II , Inst. Hautes Études Sci. Publ. Math. (1963), no. 17, 91. · Zbl 0122.16102
[30] A. Grothendieck and J. P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme , Springer-Verlag, Berlin, 1971. · Zbl 0216.33001
[31] W. Haboush, Homogeneous vector bundles and reductive subgroups of reductive algebraic groups , Amer. J. Math. 100 (1978), no. 6, 1123-1137. JSTOR: · Zbl 0432.14029 · doi:10.2307/2373966
[32] R. Hartshorne, Algebraic geometry , Springer-Verlag, New York, 1977. · Zbl 0367.14001
[33] R. Hartshorne, Residues and duality , Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. · Zbl 0212.26101 · doi:10.1007/BFb0080482
[34] G. Hochschild, The structure of Lie groups , Holden-Day Inc., San Francisco, 1965. · Zbl 0131.02702
[35] K. Jänich, Differenzierbare \(G\)-Mannigfaltigkeiten , Lecture Notes in Mathematics, No 59, Springer-Verlag, Berlin, 1968. · Zbl 0159.53701
[36] M. Knus and M. Ojanguren, Théorie de la descente et algèbres d’Azumaya , Springer-Verlag, Berlin, 1974. · Zbl 0284.13002 · doi:10.1007/BFb0057799
[37] S. Lang, Algebra , Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 1984. · Zbl 0712.00001
[38] R. G. Larson, Coseparable Hopf algebras , J. Pure Appl. Algebra 3 (1973), 261-267. · Zbl 0276.18014 · doi:10.1016/0022-4049(73)90013-3
[39] R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras , Amer. J. Math. 91 (1969), 75-94. JSTOR: · Zbl 0179.05803 · doi:10.2307/2373270
[40] D. Luna, Slices étales , Sur les groupes algébriques, Soc. Math. France, Paris, 1973, 81-105. Bull. Soc. Math. France, Paris, Mémoire 33. · Zbl 0286.14014
[41] H. Matsumura, Commutative algebra , W. A. Benjamin, Inc., New York, 1970. · Zbl 0211.06501
[42] D. Mumford, Geometric invariant theory , Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin, 1965. · Zbl 0147.39304
[43] U. Oberst, Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte Darstellungen , J. Algebra 44 (1977), no. 2, 503-538. · Zbl 0345.14016 · doi:10.1016/0021-8693(77)90198-3
[44] M. Raynaud, Anneaux locaux henséliens , Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin, 1970. · Zbl 0203.05102
[45] M. Raynaud, Passage au quotient par une relation d’équivalence plate , Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 78-85. · Zbl 0165.24003
[46] M. Raynaud, Schémas en groupes de type \((p,\dots, p)\) , Bull. Soc. Math. France 102 (1974), 241-280. · Zbl 0325.14020
[47] H.-J. Schneider, Endliche Algebraische Gruppen , Algebra-Berichte, vol. 19, Verlag Uni-Druck, München, 1974. · Zbl 0334.14023
[48] H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras , Israel J. Math. 72 (1990), no. 1-2, 167-195. · Zbl 0731.16027 · doi:10.1007/BF02764619
[49] J.-P. Serre, Représentations linéaires des groupes finis , Hermann, Paris, 1978. · Zbl 0407.20003
[50] S. S. Shatz, Group schemes, formal groups, and \(p\)-divisible groups , Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 29-78. · Zbl 0603.14033
[51] P. Slodowy, Der Scheibensatz für algebraische Transformationsgruppen , Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., vol. 13, Birkhäuser, Basel, 1989, pp. 89-113. · Zbl 0722.14031
[52] T. A. Springer, Aktionen reduktiver Gruppen auf Varietäten , Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., vol. 13, Birkhäuser, Basel, 1989, pp. 3-39. · Zbl 0706.14029
[53] M. E. Sweedler, Hopf algebras , Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. · Zbl 0194.32901
[54] M. J. Taylor and N. P. Byott, Hopf orders and Galois module structure , Group rings and class groups, DMV Sem., vol. 18, Birkhäuser, Basel, 1992, pp. 153-210. · Zbl 0811.11068
[55] R. W. Thomason, Algebraic \(K\)-theory of group scheme actions , Algebraic topology and algebraic \(K\)-theory (Princeton, N.J., 1983), Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 539-563. · Zbl 0701.19002
[56] R. W. Thomason, Comparison of equivariant algebraic and topological \(K\)-theory , Duke Math. J. 53 (1986), no. 3, 795-825. · Zbl 0614.14002 · doi:10.1215/S0012-7094-86-05344-5
[57] R. W. Thomason, Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes , Adv. in Math. 65 (1987), no. 1, 16-34. · Zbl 0624.14025 · doi:10.1016/0001-8708(87)90016-8
[58] R. W. Thomason and T. F. Trobaugh, Higher algebraic \(K\)-theory of schemes and of derived categories , The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247-435. · Zbl 0731.14001
[59] W. Waterhouse, Introduction to affine group schemes , Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York, 1979. · Zbl 0442.14017
[60] W. Waterhouse, Principal homogeneous spaces and group scheme extensions , Trans. Amer. Math. Soc. 153 (1971), 181-189. JSTOR: · Zbl 0208.48401 · doi:10.2307/1995554
[61] W. Waterhouse, Tame objects for finite commutative Hopf algebras , Proc. Amer. Math. Soc. 103 (1988), no. 2, 354-356. JSTOR: · Zbl 0654.16004 · doi:10.2307/2047139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.