×

Scaling violation and the appearance of mass in scalar quantum field theories. (English. Russian original) Zbl 1530.81120

Theor. Math. Phys. 217, No. 1, 1495-1504 (2023); translation from Teor. Mat. Fiz. 217, No. 1, 86-97 (2023).
Summary: In massless quantum field theories, scale invariance is violated in logarithmic dimensions. We discuss options for interpreting this effect as spontaneous mass emergence in the framework of skeleton self-consistency equations with the full propagator in the \(\varphi^3\), \(\varphi^4\), and \(\varphi^6\) models of a scalar field \(\varphi \).

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81R40 Symmetry breaking in quantum theory
Full Text: DOI

References:

[1] Wilson, K. G.; Kogut, J., The renormalization group and the \(\epsilon \)-expansion, Phys. Rep., 12, 75-199 (1974) · doi:10.1016/0370-1573(74)90023-4
[2] Vasil’ev, A. N., The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (2004), Boca Raton, FL: Chapman & Hall/CRC, Boca Raton, FL · Zbl 1140.82019 · doi:10.1201/9780203483565
[3] Pismensky, A. L.; Pis’mak, Yu. M., Scaling violation in massless scalar quantum field models in logarithmic dimensions, J. Phys. A: Math. Theor., 48 (2015) · Zbl 1327.81261 · doi:10.1088/1751-8113/48/32/325401
[4] Kubo, J.; Lindner, M.; Schmitz, K.; Yamada, M., Planck mass and inflation as consequences of dynamically broken scale invariance, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.015037
[5] Chudnovskii, E. M., Spontaneous breaking of conformal invariance and the Higgs mechanism, Theoret. and Math. Phys., 35, 538-540 (1978) · doi:10.1007/BF01036453
[6] Kharuk, I. V., Emergent Planck mass and dark energy from affine gravity, Theoret. and Math. Phys., 209, 1423-1436 (2021) · Zbl 1482.83013 · doi:10.1134/S004057792110007X
[7] Vitiello, G., Topological defects, fractals and the structure of quantum field theory (0000)
[8] Dominicis, C. De, Variational formulations of equilibrium statistical mechanics, J. Math. Phys., 3, 983-1002 (1962) · doi:10.1063/1.1724313
[9] Dominicis, C. De; Martin, P. C., Stationary entropy principle and renormalization in normal and superfluid systems. I. Algebraic formulation, J. Math. Phys., 5, 14-30 (1964) · doi:10.1063/1.1704062
[10] Dominicis, C. De; Martin, P. C., Stationary entropy principle and renormalization in normal and superfluid systems. II. Diagrammatic formulation, J. Math. Phys., 5, 31-59 (1964) · doi:10.1063/1.1704064
[11] Pis’mak, Yu. M., Proof of the 3-irreducibility of the third Legendre transform, Theoret. and Math. Phys., 18, 211-218 (1974) · doi:10.1007/BF01035640
[12] Vasil’ev, A. N.; Kazanskii, A. K.; Pis’mak, Yu. M., Equations for higher Legendre transforms in, Theoret. and Math. Phys., 19, 443-453 (1974) · doi:10.1007/BF01035944
[13] Vasil’ev, A. N.; Kazanskii, A. K.; Pis’mak, Yu. M., Diagrammatic analysis of the fourth Legendre transform, Theoret. and Math. Phys., 20, 754-762 (1974) · doi:10.1007/BF01037327
[14] Pis’mak, Yu. M., Combinatorial analysis of the overlapping problem for vertices with more than four legs, Theoret. and Math. Phys., 24, 649-658 (1975) · Zbl 0413.05006 · doi:10.1007/BF01036624
[15] Pis’mak, Yu. M., Combinational analysis of the overlapping problem for vertices with more than four legs. II. Higher Legendre transforms, Theoret. and Math. Phys., 24, 755-767 (1975) · Zbl 0416.05067 · doi:10.1007/BF01029058
[16] Vasil’ev, A. N.; Pis’mak, Yu. M.; Khonkonen, Yu. R., Simple method of calculating the critical indices in the \(1/n\) expansion, Theoret. and Math. Phys., 46, 104-113 (1981) · doi:10.1007/BF01030844
[17] Vasil’ev, A. N.; Pis’mak, Yu. M.; Khonkonen, Yu. R., \(1/n\) Expansion: Calculation of the exponents \(\eta\) and \(\nu\) in the order \(1/n^2\) for arbitrary number of dimensions, Theoret. and Math. Phys., 47, 465-475 (1981) · doi:10.1007/BF01019296
[18] Vasil’ev, A. N.; Pis’mak, Yu. M.; Khonkonen, Yu. R., \(1/n\) expansion: clculation of the exponent \(\eta\) in the order \(1/n^3\) by the conformal bootstrap method, Theoret. and Math. Phys., 50, 127-134 (1982) · doi:10.1007/BF01015292
[19] Pis’mak, Yu. M.; Pismensky, A. L., Self-consistency equations for composite operators in models of quantum field theory, Symmetry, 15 (2023) · doi:10.3390/sym15010132
[20] Fok, V. A., Fundamentals of Quantum Mechanics (1978), Moscow: Mir, Moscow
[21] Landau, L. D.; Lifshitz, E. M., Course of Theoretical Physics (1973), New York: Pergamon Press, New York
[22] Vasiliev, A. N., Functional Methods in Quantum Field Theory and Statistical Physics (1998), Amsterdam: Gordon and Breach, Amsterdam · Zbl 0956.81504
[23] Ramond, P., Field Theory: A Modern Primer (1990), Redwood City, CA: Addison-Wesley, Redwood City, CA · Zbl 0984.81500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.