×

Global stability of some classes of higher-order nonlinear difference equations. (English) Zbl 1194.39012

The author gives proofs of some known results on global stability of higher-order nonlinear difference equations
\[ x_{n+1} - x_n = -p x_n + f(n,x_{n - h_1},\dots,x_{n - h_r}),\quad n = 0,1,2,\dots, \]
where \(h_i \in N\), \(i =1,\dots,r\), \(r \in N\), \(p \in [0,1]\) and the function \(f\) satisfies inequalities
\[ |f(n,y_0,\dots,y_r)| \leq \sum_{i=0}^r q_i |y_i| \] or
\[ |f(n,y_0,\dots,y_r)| \leq \beta\prod_{i=0}^r |y_{i}|^{\alpha_i}, \] \(\sum_{i=0}^r \alpha_i= 1, \alpha_i > 0, \beta <1\).

MSC:

39A30 Stability theory for difference equations
39A10 Additive difference equations
Full Text: DOI

References:

[1] Aloqeili, M., Global stability of a rational symmetric difference equation, Appl. Math. Comput., 215, 3, 950-953 (2009) · Zbl 1177.39019
[2] Beddington, R. J.; Holt, S. J., On the dynamics of exploited fish populations, Fish. Invest. London, 19, 1-53 (1957)
[3] Berg, L.; Stević, S., Linear difference equations mod 2 with applications to nonlinear difference equations, J. Difference Equations Appl., 14, 7, 693-704 (2008) · Zbl 1156.39003
[4] Bibby, J., Axiomatisations of the average and a further generalisation of monotonic sequences, Glasgow Math. J., 15, 63-65 (1974) · Zbl 0291.40003
[5] Copson, E. T., On a generalisation of monotonic sequences, Proc. Edinburgh Math. Soc., 17, 2, 159-164 (1970) · Zbl 0223.40001
[6] Iričanin, B. D., A global convergence result for a higher order difference equation, Discrete Dyn. Nat. Soc., 2007 (2007), Article ID 91292, 7 pp · Zbl 1180.39003
[7] Karakostas, G.; Stević, S., On the recursive sequence \(x_{n + 1} = B + x_{n - k} / \alpha_0 x_n + \cdots + \alpha_{k - 1} x_{n - k + 1} + \gamma \), J. Difference Equations Appl., 10, 9, 809-815 (2004) · Zbl 1068.39012
[8] Karakostas, G.; Stević, S., Slowly varying solutions of the difference equations \(x_{n + 1} = f(x_n, \ldots, x_{n - k + 1}) + g(n, x_n, \ldots, x_{n - k + 1})\), J. Difference Equations Appl., 10, 3, 249-255 (2004) · Zbl 1048.39003
[9] Liz, E.; Ferreiro, J. B., A note on the global stability of generalized difference equations, Appl. Math. Lett., 15, 655-659 (2002) · Zbl 1036.39013
[10] Liz, E.; Ivanov, A. F.; Ferreiro, J. B., Discrete Halanay-type inequalities and applications, Nonlinear Anal., 55, 669-678 (2003) · Zbl 1033.39012
[11] Niamsup, P.; Phat, V. N., Asymptotic stability of nonlinear control systems described by difference equations with multiple delays, Electron. J. Differential Equations, 2000, N-11, 1-17 (2000) · Zbl 0941.93052
[12] Russell, D. C., On bounded sequences satisfying a linear inequality, Proc. Edinburgh Math. Soc., 19, 2, 11-16 (1974/75) · Zbl 0287.40002
[13] Stević, S., Behaviour of the positive solutions of the generalized Beddington-Holt equation, Panamer. Math. J., 10, 4, 77-85 (2000) · Zbl 1039.39005
[14] Stević, S., A generalization of the Copson’s theorem concerning sequences which satisfy a linear inequality, Indian J. Math., 43, 3, 277-282 (2001) · Zbl 1034.40002
[15] Stević, S., A note on bounded sequences satisfying linear inequality, Indian J. Math., 43, 2, 223-230 (2001) · Zbl 1035.40002
[16] Stević, S., Asymptotic behaviour of a sequence defined by a recurrence formula, Austral. Math. Soc. Gaz., 28, 5, 243-245 (2001) · Zbl 1024.39002
[17] Stević, S., On stability results for a new approximating fixed points iteration process, Demonstratio Math., 34, 4, 873-880 (2001) · Zbl 1011.47050
[18] Stević, S., A global convergence result, Indian J. Math., 44, 3, 361-368 (2002) · Zbl 1034.39002
[19] Stević, S., A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math., 33, 1, 45-53 (2002) · Zbl 1002.39004
[20] Stević, S., Asymptotic behaviour of a sequence defined by a recurrence formula II, Austral. Math. Soc. Gaz., 29, 4, 209-215 (2002) · Zbl 1051.39013
[21] Stević, S., Asymptotic behaviour of a sequence defined by iteration with applications, Colloq. Math., 93, 2, 267-276 (2002) · Zbl 1029.39006
[22] Stević, S., On the recursive sequence \(x_{n + 1} = x_{n - 1} / g(x_n)\), Taiwanese J. Math., 6, 3, 405-414 (2002) · Zbl 1019.39010
[23] Stević, S., On the recursive sequence \(x_{n + 1} = g(x_n, x_{n - 1}) /(A + x_n)\), Appl. Math. Lett., 15, 305-308 (2002) · Zbl 1029.39007
[24] Stević, S., A note on bounded sequences satisfying linear nonhomogeneous difference equation, Indian J. Math., 45, 3, 357-367 (2003) · Zbl 1069.39005
[25] Stević, S., A note on the recursive sequence \(x_{n + 1} = p_k x_n + p_{k - 1} x_{n - 1} + \cdots + p_1 x_{n - k + 1}\), Ukrainian Math. J., 55, 4, 691-697 (2003) · Zbl 1077.39009
[26] Stević, S., Asymptotic behaviour of a nonlinear difference equation, Indian J. Pure Appl. Math., 34, 12, 1681-1687 (2003) · Zbl 1049.39012
[27] Stević, S., On the recursive sequence \(x_{n + 1} = x_n +(x_n^\alpha / n^\beta)\), Bull. Calcuta Math. Soc., 95, 1, 39-46 (2003) · Zbl 1052.39012
[28] Stević, S., On sequences which satisfy a nonlinear inequality, Indian J. Math., 45, 1, 105-116 (2003) · Zbl 1045.26011
[29] Stević, S., Stability results for \(\varphi \)-strongly pseudocontractive mappings, Yokohama Math. J., 50, 71-85 (2003) · Zbl 1068.47076
[30] Stević, S., Asymptotic behavior of solutions of a nonlinear difference equation with a continuous argument, Ukrainian Math. J., 56, 8, 1300-1307 (2004) · Zbl 1119.39300
[31] Stević, S., More on the difference equation \(x_{n + 1} = x_{n - 1} /(1 + x_{n - 1} x_n)\), Appl. Math. E-notes, 4, 80-85 (2004) · Zbl 1055.39012
[32] Stević, S., On the recursive sequence \(x_{n + 1} = (\alpha_1 x_n + \cdots + \alpha_k x_{n - k + 1}) /(A + f(x_n, \ldots, x_{n - k + 1}))\), Bull. Inst. Math. Acad. Sinica, 33, 2, 173-183 (2005) · Zbl 1079.39013
[33] Stević, S., A short proof of the Cushing-Henson conjecture, Discrete Dyn. Nat. Soc., 2006 (2006), Article ID 37264, 5 pp · Zbl 1149.39300
[34] Stević, S., Asymptotic behavior of a class of nonlinear difference equations, Discrete Dyn. Nat. Soc., 2006 (2006), Article ID 47156, 10 pp · Zbl 1121.39006
[35] Stević, S., Global stability and asymptotics of some classes of rational difference equations, J. Math. Anal. Appl., 316, 60-68 (2006) · Zbl 1090.39009
[36] Stević, S., On monotone solutions of some classes of difference equations, Discrete Dyn. Nat. Soc., 2006 (2006), Article ID 53890, 9 pp · Zbl 1109.39013
[37] Stević, S., On positive solutions of a \((k + 1)\) th order difference equation, Appl. Math. Lett., 19, 5, 427-431 (2006) · Zbl 1095.39010
[38] Stević, S., Asymptotics of some classes of higher order difference equations, Discrete Dyn. Nat. Soc. Vol., 2007 (2007), Article ID 56813, 20 pp · Zbl 1180.39009
[39] Stević, S., Existence of nontrivial solutions of a rational difference equation, Appl. Math. Lett., 20, 28-31 (2007) · Zbl 1131.39009
[40] Stević, S., Bounded solutions of a class of difference equations in Banach spaces producing controlled chaos, Chaos Solitons Fractals, 35, 2, 238-245 (2008) · Zbl 1142.39013
[41] Stević, S., Nontrivial solutions of a higher-order rational difference equation, Mat. Zametki, 84, 5, 772-780 (2008) · Zbl 1219.39007
[42] Stević, S., Boundedness character of a class of difference equations, Nonlinear Anal.: Theory, Methods & Applications, 70, 839-848 (2009) · Zbl 1162.39011
[43] Stević, S., Boundedness character of two classes of third-order difference equations, J. Difference Equations Appl., 15, 11-12, 1193-1209 (2009) · Zbl 1182.39012
[44] Stević, S., Global stability of a difference equation with maximum, Appl. Math. Comput., 210, 525-529 (2009) · Zbl 1167.39007
[45] Stević, S., On a class of higher-order difference equations, Chaos Solitons Fractals, 42, 138-145 (2009) · Zbl 1198.39021
[46] Stević, S., Global stability of a max-type equation, Appl. Math. Comput., 216, 354-356 (2010) · Zbl 1193.39009
[47] Udpin, S.; Niamsup, P., New discrete type inequalities and global stability of nonlinear difference equations, Appl. Math. Lett., 22, 856-859 (2009) · Zbl 1177.39026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.