×

Completely discretized, finite quantum mechanics. (English) Zbl 1541.81002

Summary: I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schrödinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete and finite set of state vectors. The biggest challenges to the viability of such a model come from cosmological considerations. The theory may have implications for questions of mathematical realism and finitism.

MSC:

81P05 General and philosophical questions in quantum theory
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
31C20 Discrete potential theory
03D05 Automata and formal grammars in connection with logical questions
51F25 Orthogonal and unitary groups in metric geometry

References:

[1] Easwaran, K.; Hájek, A.; Mancosu, P.; Oppy, G.; Zalta, EN, Infinity, The Stanford Encyclopedia of Philosophy (2021), Winter: Metaphysics Research Lab, Stanford University, Winter
[2] Wolfram, S., A class of models with the potential to represent fundamental physics, Complex Syst., 29, 2, 107-536 (2020) · doi:10.25088/ComplexSystems.29.1.2
[3] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113-1133 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[4] Surya, S., The causal set approach to quantum gravity, Living Rev. Relativ., 1, 22 (2019) · Zbl 1442.83029
[5] Buniy, R.; Hsu, S.; Zee, A., Is Hilbert space discrete?, Phys. Lett., B630, 68-72 (2005) · Zbl 1247.81010 · doi:10.1016/j.physletb.2005.09.084
[6] Palmer, T.N.: Discretised hilbert space and superdeterminism. arXiv:2204.05763 [quant-ph]
[7] Bao, N.; Carroll, SM; Singh, A., The Hilbert space of quantum gravity is locally finite-dimensional, Int. J. Mod. Phys. D, 26, 12, 1743013 (2017) · Zbl 1426.81046 · doi:10.1142/S0218271817430131
[8] Carroll, SM; Singh, A.; Aguirre, A.; Foster, B.; Merali, Z., Mad-dog Everettianism: quantum mechanics at its most minimal, What is Fundamental?, 95-104 (2019), New York: Springer, New York · doi:10.1007/978-3-030-11301-8_10
[9] Carroll, S.M.: Reality as a vector in Hilbert space. arXiv:2103.09780 [quant-ph]
[10] Wallace, D., The Emergent Multiverse: Quantum Theory According to the Everett Interpretation (2012), Oxford: Oxford University Press, Oxford · Zbl 1272.81003 · doi:10.1093/acprof:oso/9780199546961.001.0001
[11] Albert, D.; Cushing, JT; Fine, A.; Goldstein, S., Elementary quantum metaphysics, Bohmian Mechanics and Quantum theory: An Appraisal, 277-284 (1996), Norwell: Kluwer Academic Publishers, Norwell · doi:10.1007/978-94-015-8715-0_19
[12] Carroll, SM; Singh, A., Quantum mereology: factorizing Hilbert space into subsystems with quasiclassical dynamics, Phys. Rev. A, 103, 2, 022213 (2021) · doi:10.1103/PhysRevA.103.022213
[13] Cotler, JS; Penington, GR; Ranard, DH, Locality from the spectrum, Commun. Math. Phys., 368, 3, 1267-1296 (2019) · Zbl 1416.81054 · doi:10.1007/s00220-019-03376-w
[14] Cao, C.; Carroll, SM; Michalakis, S., Space from Hilbert space: recovering geometry from bulk entanglement, Phys. Rev. D, 95, 2, 024031 (2017) · doi:10.1103/PhysRevD.95.024031
[15] Cao, C.; Carroll, SM, Bulk entanglement gravity without a boundary: towards finding Einstein’s equation in Hilbert space, Phys. Rev. D, 97, 8, 086003 (2018) · doi:10.1103/PhysRevD.97.086003
[16] Levin, MA; Wen, X-G, String net condensation: a physical mechanism for topological phases, Phys. Rev. B, 71, 045110 (2005) · doi:10.1103/PhysRevB.71.045110
[17] Carroll, S.M., Chatwin-Davies, A.: Cosmic equilibration: a holographic no-hair theorem from the generalized second law. arXiv:1703.09241 [hep-th]
[18] Banks, T., Cosmological breaking of supersymmetry?, Int. J. Mod. Phys. A, 16, 910-921 (2001) · Zbl 0982.83040 · doi:10.1142/S0217751X01003998
[19] Nomura, Y., Physical theories, eternal inflation, and quantum universe, JHEP, 11, 063 (2011) · Zbl 1306.83079 · doi:10.1007/JHEP11(2011)063
[20] Bousso, R.; Susskind, L., The multiverse interpretation of quantum mechanics, Phys. Rev. D, 85, 045007 (2012) · doi:10.1103/PhysRevD.85.045007
[21] Bao, N., Cao, C., Carroll, S.M., McAllister, L.: Quantum circuit cosmology: the expansion of the universe since the first qubit. arXiv:1702.06959 [hep-th]
[22] Dyson, L.; Kleban, M.; Susskind, L., Disturbing implications of a cosmological constant, JHEP, 10, 011 (2002) · doi:10.1088/1126-6708/2002/10/011
[23] Albrecht, A.; Sorbo, L., Can the universe afford inflation?, Phys. Rev. D, 70, 6, 063528 (2004) · doi:10.1103/PhysRevD.70.063528
[24] Carroll, S.M.: What if time really exists?. arXiv:0811.3772 [gr-qc]
[25] Carroll, SM; Dasgupta, S.; Dotan, R.; Weslake, B., Why Boltzmann brains are bad, Current Controversies in Philosophy of Science, 7-20 (2017), Milton Park: Routledge, Milton Park
[26] Boddy, KK; Carroll, SM; Pollack, J., De sitter space without dynamical quantum fluctuations, Found. Phys., 46, 6, 702-735 (2016) · Zbl 1380.81023 · doi:10.1007/s10701-016-9996-8
[27] Lloyd, S.: Decoherent histories approach to the cosmological measure problem. arXiv:1608.05672 [quant-ph]
[28] Page, DN; Wootters, WK, Evolution without evolution: dynamics described by stationary observables, Phys. Rev. D, 27, 2885 (1983) · doi:10.1103/PhysRevD.27.2885
[29] Banks, T., T C P, quantum gravity, the cosmological constant and all that, Nucl. Phys. B, 249, 332-360 (1985) · doi:10.1016/0550-3213(85)90020-3
[30] Albrecht, A.; Iglesias, A., The clock ambiguity and the emergence of physical laws, Phys. Rev. D, 77, 063506 (2008) · doi:10.1103/PhysRevD.77.063506
[31] Rovelli, C., Forget time, Found. Phys., 41, 1475-1490 (2011) · Zbl 1242.83107 · doi:10.1007/s10701-011-9561-4
[32] Giovannetti, V.; Lloyd, S.; Maccone, L., Quantum time, Phys. Rev. D, 92, 4, 045033 (2015) · doi:10.1103/PhysRevD.92.045033
[33] Marletto, C.; Vedral, V., Evolution without evolution and without ambiguities, Phys. Rev. D, 95, 4, 043510 (2017) · doi:10.1103/PhysRevD.95.043510
[34] Singh, A., Quantum space, quantum time, and relativistic quantum mechanics, Quant. Stud. Math. Found., 9, 1, 35-53 (2022) · Zbl 07899027 · doi:10.1007/s40509-021-00255-9
[35] Putnam, H., What is mathematical truth?, Hist. Math., 2, 4, 529-533 (1975) · Zbl 0325.02004 · doi:10.1016/0315-0860(75)90116-0
[36] Carroll, S.M.: Reality realism. https://philarchive.org/rec/CARRRK
[37] Presburger, M.: Uber die vollstandigkeiteines gewissen systems der arithmetik ganzer zahlen, in welchen die addition als einzige operation hervortritt. In: Comptes-Rendus du ler Congres des Mathematiciens des Pays Slavs. (1929) · JFM 56.0825.04
[38] Haase, C., A survival guide to Presburger arithmetic, ACM SIGLOG News, 5, 3, 67-82 (2018) · doi:10.1145/3242953.3242964
[39] Ye, F., Strict Finitism and the Logic of Mathematical Applications (2011), New York: Springer, New York · Zbl 1279.03006 · doi:10.1007/978-94-007-1347-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.