×

Design and implementation of an estimator of fractal dimension using fuzzy techniques. (English) Zbl 0970.68748

Summary: This paper presents a new method for estimating the fractal dimension of one-dimensional profiles. In this approach, the real fractal dimension \(D\) is considered as an implicit continuous function of the estimated fractal dimension \(D_e\) the resolution and several other elements. By approximating this function from a number of experimental data, we can obtain more precise estimates of the fractal dimension \(D\). This approximation is done using a fuzzy logic controller and an averaging procedure, permitting to, respectively, decrease two kinds of estimation errors: (1) systematic errors, which are associated with values of \(D\), resolution, trends of profiles, and etc. (2) stochastic errors, which are mainly caused by the choice of the sequence \(\{\varepsilon_k\}\) representing the sizes of structuring elements corresponding to different scales. The effectiveness of this method is shown by estimating fractal dimensions for two sample functions and a number of natural and synthetic fibers.

MSC:

68U99 Computing methodologies and applications
68T10 Pattern recognition, speech recognition
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Software:

Genocop
Full Text: DOI

References:

[1] Mandelbrot, B. B., The Fractal Geometry of Nature (1983), Freeman: Freeman New York · Zbl 0504.28001
[2] Parker, T. S.; Chua, L. O., Practical Numerical Algorithms for Chaotic Systems (1989), Springer: Springer New York · Zbl 0692.58001
[3] Barnsley, M. T., Fractals Everywhere (1988), Academic Press: Academic Press New York · Zbl 0691.58001
[4] Pentland, A. P., Fractal-based description of natural scenes, IEEE Trans. Pattern Anal. Mach. Intell. n, 6, 661-674 (1984)
[5] Chen, S. S.; Keller, J. M.; Crownover, R. M., On the calculation of fractal features from images, IEEE Trans. Pattern Anal. Mach. Intell., 15, 10, 1087-1090 (1993)
[6] Tricot, C.; Quiniou, J. F.; Wehbi, D.; Roques-Carmes, C.; Dubuc, B., Evaluation de la dimension fractale d’un graphe, Rev. Phys. Appl., 23, 111-124 (1988)
[7] Dubuc, B., Evaluating the fractal dimension of profiles, Phys. Rev. A, 39, 3, 1500-1512 (1989)
[8] Q. Huang, J.R. Lorch, R.C. Dubes, Can the fractal dimension of images be measured? Pattern Recognition 27 (3) (1994) 339-349.; Q. Huang, J.R. Lorch, R.C. Dubes, Can the fractal dimension of images be measured? Pattern Recognition 27 (3) (1994) 339-349.
[9] Mandelbrot, B. B.; Wallis, J. R., Computer experiments with fractional Gaussian noises. Part 2rescaled ranges and spectra, Water Resour. Res., 5, 228-241 (1969)
[10] Bassingthwaighte, J. B.; Raymond, G. M., Evaluating rescaled range analysis for time series, Ann. Biomed. Eng., 22, 432-444 (1994)
[11] Buckley, J. J., Universal fuzzy controller, Automatica, 28, 1245-1248 (1992) · Zbl 0775.93133
[12] Castro, J. L., Fuzzy logic Controller are universal approximators, IEEE Trans. Systems Man Cybernet, 25, 4, 629-634 (1995)
[13] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Systems Man Cybernet, 15, 116-132 (1985) · Zbl 0576.93021
[14] Mandami, E. H.; Assilian, S., An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Mach. Stud., 7, 1-13 (1975) · Zbl 0301.68076
[15] Dubuc, B., On Takagi fractal surfaces, Canad.Math.Bull., 32, 3, 377-384 (1989) · Zbl 0691.28001
[16] Pancorbo, M.; Anguiano, E.; Aguilar, M., Profiles fractal characterization by frequency analysis, Fractals, 2, 1, 127-136 (1994)
[17] Liebovitch, L. S., Toth, A fast algorithm to determine fractal dimensions by box counting, Phys. Lett. A, 141, 386-390 (1989)
[18] Abe, S.; Lan, M., Fuzzy rules extraction directly from numerical data for function approximation, IEEE Trans. Systems Man Cybernet, 25, 1, 119-129 (1995) · Zbl 1372.65047
[19] Thawonmas, R.; Abe, S., A novel approach to feature selection based on analysis of class regions, IEEE Trans Systems Man Cybernet - Part B: Cybernetics, 27, 2, 196-207 (1997)
[20] Holland, J. H., Adaptation in Natural and Artificial Systems (1975), MIT Press: MIT Press Cambridge, MA · Zbl 0317.68006
[21] Pedrycz, W.; Oliveira, J. V., An algorithm framework for development and optimization of fuzzy models, Fuzzy Sets and Systems, 80, 37-55 (1996)
[22] Michalewicz, Z., Genetic Algorithms + Data Structure = Evolution Programs (1994), Springer: Springer Berlin · Zbl 0818.68017
[23] M.Bigerelle, A.Iost, Calcul de la dimension fractale d’un profil par la méthode des autocorrélations moyennées normées, C.R Acad.Sci. Paris, Tome 323, Sér. IIb (1996) 669-675.; M.Bigerelle, A.Iost, Calcul de la dimension fractale d’un profil par la méthode des autocorrélations moyennées normées, C.R Acad.Sci. Paris, Tome 323, Sér. IIb (1996) 669-675. · Zbl 0947.28009
[24] Muraoka, Y.; Inoue, K.; Tagaya, H.; Nishizawa, K., Fiber crimp analysis by fractal dimension, Textile Res. J., 65, 8, 454-460 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.