×

Budget-limited distribution learning in multifidelity problems. (English) Zbl 1512.62010

Summary: Multifidelity methods are widely used for estimating quantities of interest (QoI) in computational science by employing numerical simulations of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information, e.g., scalar statistics, about the QoI. Further quantification of uncertainty, e.g., for risk assessment, failure probabilities, or confidence intervals, requires estimation of the full distributions. In this paper, we generalize the ideas in [Y. Xu et al., SIAM J. Sci. Comput. 44, No. 1, A150–A175 (2022; Zbl 1478.62007)] to develop a multifidelity method that approximates the full distribution of scalar-valued QoI. The main advantage of our approach compared to alternative methods is that we require no particular relationships among the high and lower-fidelity models (e.g. model hierarchy), and we do not assume any knowledge of model statistics including correlations and other cross-model statistics before the procedure starts. Under suitable assumptions in the framework above, we achieve provable 1-Wasserstein metric convergence of an algorithmically constructed distributional emulator via an exploration-exploitation strategy. We also prove that crucial policy actions taken by our algorithm are budget-asymptotically optimal. Numerical experiments are provided to support our theoretical analysis.

MSC:

62-08 Computational methods for problems pertaining to statistics
62J05 Linear regression; mixed models
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65C05 Monte Carlo methods

Citations:

Zbl 1478.62007

Software:

R

References:

[1] Beran, R.; Le Cam, L.; Millar, P., Convergence of stochastic empirical measures, J. Multivar. Anal., 23, 1, 159-168 (1987) · Zbl 0643.62007 · doi:10.1016/0047-259X(87)90183-7
[2] Bobkov,S., Ledoux, M.: One-Dimensional Empirical Measures, Order Statistics, and Kantorovich Transport Distances. Vol. 261, No. 1259. American Mathematical Society (2019) · Zbl 1454.60007
[3] Bubeck, S.; Cesa-Bianchi, N., Regret analysis of stochastic and nonstochastic multi-armed bandit problems, Found. Trends R Mach. Learn., 5, 1, 1-122 (2012) · Zbl 1281.91051 · doi:10.1561/2200000024
[4] Cambanis, S.; Simons, G.; Stout, W., Inequalities for E k (x, y) when the marginals are fixed, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 36, 4, 285-294 (1976) · Zbl 0325.60002 · doi:10.1007/BF00532695
[5] Chatterjee, S.: Lecture Notes on Stein’s Method. Stanford Lecture Notes (2007)
[6] Cohen, A.; DeVore, R., Approximation of high-dimensional parametric PDEs, Acta Numer., 24, 1-159 (2015) · Zbl 1320.65016 · doi:10.1017/S0962492915000033
[7] Farcas, I.-G.: Context-aware model hierarchies for higher-dimensional uncertainty quantification. PhD thesis. Technische Universität München (2020)
[8] Gibbs, AL; Su, FE, On choosing and bounding probability metrics, Int. Stat. Rev., 70, 3, 419-435 (2002) · Zbl 1217.62014 · doi:10.1111/j.1751-5823.2002.tb00178.x
[9] Giles, MB, Multilevel Monte Carlo path simulation, Oper. Res., 56, 3, 607-617 (2008) · Zbl 1167.65316 · doi:10.1287/opre.1070.0496
[10] Giles, MB; Nagapetyan, T.; Ritter, K., Multilevel Monte Carlo approximation of distribution functions and densities, SIAM/ASA J. Uncertain. Quantif., 3, 1, 267-295 (2015) · Zbl 1322.65014 · doi:10.1137/140960086
[11] Giles, M.B., Nagapetyan, T., Ritter, K.: Adaptive multilevel Monte Carlo approximation of distribution functions. arXiv preprint arXiv:1706.06869 (2017) · Zbl 1322.65014
[12] Gorodetsky, AA; Geraci, G.; Eldred, MS; Jakeman, JD, A generalized approximate control variate framework for multifidelity uncertainty quantification, J. Comput. Phys., 408 (2020) · Zbl 07505605 · doi:10.1016/j.jcp.2020.109257
[13] Hammersley, JM; Handscomb, DC, Monte Carlo Methods (1964), London: Methuen, London · Zbl 0121.35503 · doi:10.1007/978-94-009-5819-7
[14] Ishigami,T., Homma, T.: An importance quantification technique in uncertainty analysis for computer models. In: [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis. IEEE Computere Society Press (1990). doi:10.1109/isuma.1990.151285
[15] Koenker, R., Fundamentals of quantile regression, Quantile Regression, 26-67 (2001), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/ccol0521845734.002
[16] Krumscheid, S.; Nobile, F., Multilevel Monte Carlo Approximation of Functions, SIAM/ASA J. Uncertain. Quantif., 6, 3, 1256-1293 (2018) · Zbl 1490.65023 · doi:10.1137/17m1135566
[17] Lai, TL; Wei, CZ, Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems, Ann. Stat., 10, 1, 154-166 (1982) · Zbl 0649.62060 · doi:10.1214/aos/1176345697
[18] Lattimore, T.; Szepesvári, C., Bandit Algorithms (2020), Cambridge: Cambridge University Press, Cambridge · Zbl 1439.68002 · doi:10.1017/9781108571401
[19] Lu, D.; Zhang, G.; Webster, C.; Barbier, C., An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations, Water Resour. Res., 52, 12, 9642-9660 (2016) · doi:10.1002/2016wr019475
[20] Massart, P., The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, Ann. Probab., 18, 1269-1283 (1990) · Zbl 0713.62021 · doi:10.1214/aop/1176990746
[21] Pan, X.; Zhou, W-X, Multiplier bootstrap for quantile regression: non-asymptotic theory under random design, Inf. Inference J. IMA (2020) · Zbl 07446773 · doi:10.1093/imaiai/iaaa006
[22] Panaretos, VM; Zemel, Y., Statistical aspects of Wasserstein distances, Annu. Rev. Stat. Appl., 6, 405-431 (2019) · doi:10.1146/annurev-statistics-030718-104938
[23] Peherstorfer, B., Multifidelity Monte Carlo estimation with adaptive low-fidelity models, SIAM/ASA J. Uncertain. Quantif., 7, 2, 579-603 (2019) · Zbl 1428.35570 · doi:10.1137/17M1159208
[24] Peherstorfer, B.; Willcox, K.; Gunzburger, M., Optimal model management for multifidelity Monte Carlo estimation, SIAM J. Sci. Comput., 38, 5, A3163-A3194 (2016) · Zbl 1351.65009 · doi:10.1137/15m1046472
[25] Peherstorfer, B.; Willcox, K.; Gunzburger, M., Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60, 3, A550-A591 (2018) · Zbl 1458.65003 · doi:10.1137/16M1082469
[26] Qian, E.; Peherstorfer, B.; O’Malley, D.; Vesselinov, VV; Willcox, K., Multifidelity Monte Carlo estimation of variance and sensitivity indices, SIAM/ASA J. Uncertain. Quantif., 6, 2, 683-706 (2018) · Zbl 1394.62175 · doi:10.1137/17m1151006
[27] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria (2020)
[28] Robinson, PM, Root-N-consistent semiparametric regression, Econometrica, 56, 4, 931 (1988) · Zbl 0647.62100 · doi:10.2307/1912705
[29] Schaden, D.; Ullmann, E., On multilevel best linear unbiased estimators, SIAM/ASA J. Uncertain. Quantif., 8, 2, 601-635 (2020) · Zbl 1439.35591 · doi:10.1137/19m1263534
[30] Schaden, D.; Ullmann, E., Asymptotic analysis of multilevel best linear unbiased estimators, SIAM/ASA J. Uncertain. Quantif., 9, 3, 953-978 (2021) · Zbl 1497.65235 · doi:10.1137/20M1321607
[31] Vershynin, R., High-Dimensional Probability: An Introduction with Applications in Data Science (2018), Cambridge: Cambridge University Press, Cambridge · Zbl 1430.60005
[32] Villani, C., The metric side of optimal transportation, Graduate Studies in Mathematics, 205-235 (2003) · Zbl 1106.90001 · doi:10.1090/gsm/058/08
[33] Williams, D., Probability with Martingales (1991), Cambridge: Cambridge University Press, Cambridge · Zbl 0722.60001 · doi:10.1017/CBO9780511813658
[34] Xu, Y.; Keshavarzzadeh, V.; Kirby, RM; Narayan, A., A bandit-learning approach to multifidelity approximation, SIAM J. Sci. Comput., 44, 1, A150-A175 (2022) · Zbl 1478.62007 · doi:10.1137/21M1408312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.