×

The modular Temperley-Lieb algebra. (English) Zbl 1536.16011

The paper under review studies the composition multiplicities of the simple modules in standard and projective modules over the Temperley-Lieb algebra \(\operatorname{TL}_n(\delta)\) over a field of positive characteristic. In fact, closed formulas are obtained for these. Further, this is then used to derive a formula for the dimension of the simple modules.
The initial step is to use the truncation functors in order to reduce the problem to determining the multiplicity of the simple module \(L(n, n)\) in the standard modules \(S(n, r)\). A lower bound is first established using certain linear maps called candidate morphisms, extending ideas from J. J. Graham and G. I. Lehrer [Enseign. Math. (2) 44, No. 3–4, 173–218 (1998; Zbl 0964.20002)]. Subsequently, it is shown that this is also an upper bound, using restriction to \(\operatorname{TL}_{n-1}(\delta)\), as well as a certain central element \(F_n\) defined in [J. Belletête and Y. Saint-Aubin, J. Math. Phys. 55, No. 11, 111706, 41 p. (2014; Zbl 1348.82029)].
The paper concludes by describing connections and potential applications to the theory of Soergel bimodules in positive characteristic and Jones-Wenzl idempotents in mixed characteristic.

MSC:

16G99 Representation theory of associative rings and algebras

References:

[1] H. H. Andersen, “Simple modules for Temperley-Lieb algebras and related algebras”, J. Algebra 520 (2019), 276-308. · Zbl 1448.17009 · doi:10.1016/j.jalgebra.2018.10.035
[2] H. H. Andersen, C. Stroppel, and D. Tubbenhauer, “Cellular structures using \[U_q\]-tilting modules”, Pacific J. Math. 292:1 (2018), 21-59. · Zbl 1425.17005 · doi:10.2140/pjm.2018.292.21
[3] G. Burrull, N. Libedinsky, and P. Sentinelli, “\[p\]-Jones-Wenzl idempotents”, Adv. Math. 352 (2019), 246-264. · Zbl 1498.20026 · doi:10.1016/j.aim.2019.06.005
[4] A. Cox and K. Erdmann, “On \[{\rm Ext}^2\] between Weyl modules for quantum \[{\rm GL}_n\]”, Math. Proc. Cambridge Philos. Soc. 128:3 (2000), 441-463. · Zbl 0963.20021 · doi:10.1017/S0305004199004296
[5] A. Cox, J. Graham, and P. Martin, “The blob algebra in positive characteristic”, J. Algebra 266:2 (2003), 584-635. · Zbl 1144.20300 · doi:10.1016/S0021-8693(03)00260-6
[6] S. Donkin, \[ The q\]-Schur algebra, London Mathematical Society Lecture Note Series 253, Cambridge University Press, 1998. · Zbl 0927.20003 · doi:10.1017/CBO9780511600708
[7] B. Elias, “The two-color Soergel calculus”, Compos. Math. 152:2 (2016), 327-398. · Zbl 1382.20006 · doi:10.1112/S0010437X15007587
[8] B. Elias and N. Libedinsky, “Indecomposable Soergel bimodules for universal Coxeter groups”, Trans. Amer. Math. Soc. 369:6 (2017), 3883-3910. · Zbl 1435.20009 · doi:10.1090/tran/6754
[9] F. M. Goodman and H. Wenzl, “The Temperley-Lieb algebra at roots of unity”, Pacific J. Math. 161:2 (1993), 307-334. · Zbl 0823.16004 · doi:10.2140/pjm.1993.161.307
[10] J. J. Graham and G. I. Lehrer, “Cellular algebras”, Invent. Math. 123:1 (1996), 1-34. · Zbl 0853.20029 · doi:10.1007/BF01232365
[11] J. J. Graham and G. I. Lehrer, “The representation theory of affine Temperley-Lieb algebras”, Enseign. Math. (2) 44:3-4 (1998), 173-218. · Zbl 0964.20002
[12] L. T. Jensen and G. Williamson, “The \[p\]-canonical basis for Hecke algebras”, pp. 333-361 in Categorification and higher representation theory, Contemp. Math. 683, Amer. Math. Soc., Providence, RI, 2017. · Zbl 1362.81008 · doi:10.1090/conm/683
[13] S. Morrison, “A formula for the Jones-Wenzl projections”, pp. 367-378 in Proceedings of the 2014 Maui and 2015 Qinhuangdao conferences in honour of Vaughan F. R. Jones’ 60th birthday, Proc. Centre Math. Appl. Austral. Nat. Univ. 46, Austral. Nat. Univ., Canberra, 2017. · Zbl 1433.17019
[14] D. Ridout and Y. Saint-Aubin, “Standard modules, induction and the structure of the Temperley-Lieb algebra”, Adv. Theor. Math. Phys. 18:5 (2014), 957-1041. · Zbl 1308.82015 · doi:10.4310/ATMP.2014.v18.n5.a1
[15] R. P. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc. 119, Amer. Math. Soc., Providence, RI, 1972. · Zbl 0246.05007
[16] H. N. V. Temperley and E. H. Lieb, “Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem”, Proc. Roy. Soc. London Ser. A 322:1549 (1971), 251-280. · Zbl 0211.56703 · doi:10.1098/rspa.1971.0067
[17] B. W. Westbury, “The representation theory of the Temperley-Lieb algebras”, Math. Z. 219:4 (1995), 539-565 · Zbl 0840.16008 · doi:10.1007/BF02572380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.