×

A fixed-point theorem for ordered contraction-type decreasing operators in Banach space with lattice structure. (English) Zbl 1442.47038

Summary: In this work, we mainly improve the results in [A. Amini-Harandi and H. Emami, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 5, 2238–2242 (2010; Zbl 1197.54054)]. By introducing a new kind of ordered contraction-type decreasing operator in Banach space, we obtain a unique fixed point by using the iterative algorithm. An example is also presented to illustrate the theorem.

MSC:

47H10 Fixed-point theorems
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
47J26 Fixed-point iterations

Citations:

Zbl 1197.54054

References:

[1] Nieto, J. J.; Rodríguez-López, R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica, English Series, 23, 12, article 769, 2205-2212 (2007) · Zbl 1140.47045 · doi:10.1007/s10114-005-0769-0
[2] Nieto, J. J.; Pouso, R. L.; Rodríguez-López, R., Fixed point theorems in ordered abstract spaces, Proceedings of the American Mathematical Society, 135, 8, 2505-2518 (2007) · Zbl 1126.47045 · doi:10.1090/S0002-9939-07-08729-1
[3] O’Regan, D.; Petruşel, A., Fixed point theorems for generalized contractions in ordered metric spaces, Journal of Mathematical Analysis and Applications, 341, 2, 1241-1252 (2008) · Zbl 1142.47033 · doi:10.1016/j.jmaa.2007.11.026
[4] Borkowski, M.; Bugajewski, D.; Zima, M., On some fixed-point theorems for generalized contractions and their perturbations, Journal of Mathematical Analysis and Applications, 367, 2, 464-475 (2010) · Zbl 1190.47060 · doi:10.1016/j.jmaa.2010.01.014
[5] Harjani, J.; Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Analysis, 71, 7-8, 3403-3410 (2009) · Zbl 1221.54058 · doi:10.1016/j.na.2009.01.240
[6] Amini-Harandi, A.; Emami, H., A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Analysis, 72, 5, 2238-2242 (2010) · Zbl 1197.54054 · doi:10.1016/j.na.2009.10.023
[7] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 · doi:10.1016/j.na.2011.10.014
[8] Kadelburg, Z.; Pavlovic, M.; Radenovic, S., Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Computers & Mathematics with Applications, 59, 9, 3148-3159 (2010) · Zbl 1193.54035 · doi:10.1016/j.camwa.2010.02.039
[9] Zhai, C.; Wang, L., φ − (h,e)-concave operators and applications, Mathematical Analysis and Applications, 454, 2, 571-584 (2017) · Zbl 1419.34046 · doi:10.1016/j.jmaa.2017.05.010
[10] Zhao, Z. Q., Fixed points of τ-φ-convex operators and applications, Applied Mathematics Letters, 23, 5, 561-566 (2010) · Zbl 1186.47047 · doi:10.1016/j.aml.2010.01.011
[11] Li, X.; Zhao, Z., On a fixed point theorem of mixed monotone operators and applications, Electronic Journal of Qualitative Theory of Differential Equations, 94, 94, 1-7 (2011) · Zbl 1340.47102 · doi:10.14232/ejqtde.2011.1.94
[12] Zhao, Z., Existence and uniqueness of fixed points for some mixed monotone operators, Nonlinear Analysis, 73, 6, 1481-1490 (2010) · Zbl 1229.47082 · doi:10.1016/j.na.2010.04.008
[13] Wang, L.; Liu, B.; Bai, R., Stability of a mixed type functional equation on multi-Banach spaces: a fixed point approach, Fixed Point Theory and Applications, 2010, 1 (2010) · Zbl 1191.39028 · doi:10.1155/2010/283827
[14] Wang, L., Intuitionistic fuzzy stability of a quadratic functional equation, Fixed Point Theory and Applications, 2010, 1 (2010) · Zbl 1207.39047 · doi:10.1155/2010/107182
[15] Wang, T.; Hao, Z., New results of mixed monotone operator equations, Topol. Methods Nonlinear Anal, 53, 1 (2019) · Zbl 07068337 · doi:10.12775/TMNA.2019.003
[16] Kong, D.; Liu, L.; Wu, Y., Isotonicity of the metric projection with applications to variational inequalities and fixed point theory in Banach spaces, Journal of Fixed Point Theory and Applications, 19, 3, 1889-1903 (2017) · Zbl 1497.47076 · doi:10.1007/s11784-016-0337-5
[17] Liu, L.; Sun, F.; Zhang, X.; Wu, Y., Bifurcation analysis for a singular differential system with two parameters via to topological degree theory, Nonlinear Analysis, 2017, 1, 31-50 (2017) · Zbl 1420.34048 · doi:10.15388/na.2017.1.3
[18] Zhang, X.; Liu, L.; Wu, Y.; Lu, Y., The iterative solutions of nonlinear fractional differential equations, Applied Mathematics and Computation, 219, 9, 4680-4691 (2013) · Zbl 06447274 · doi:10.1016/j.amc.2012.10.082
[19] Zhang, X.; Liu, L.; Wu, Y.; Wiwatanapataphee, B., The spectral analysis for a singular fractional differential equation with a signed measure, Applied Mathematics and Computation, 257, 252-263 (2015) · Zbl 1338.34032 · doi:10.1016/j.amc.2014.12.068
[20] Mao, J.; Zhao, Z.; Wang, C., The exact iterative solution of fractional differential equation with nonlocal boundary value conditions, Journal of Function Spaces, 2018 (2018) · Zbl 1398.34021 · doi:10.1155/2018/8346398
[21] Mao, J.; Zhao, Z.; Wang, C., The unique positive solution for singular Hadamard fractional boundary value problems, Journal of Function Spaces, 2019 (2019) · Zbl 1425.34020 · doi:10.1155/2019/5923490
[22] Mao, J.; Zhao, Z.; Wang, C., The unique iterative positive solution of fractional boundary value problem with q-difference, Applied Mathematics Letters, 100, article 106002 (2020) · Zbl 1437.65228 · doi:10.1016/j.aml.2019.106002
[23] Chen, C.; Zhang, X.; Zhang, G.; Zhang, Y., A two-grid finite element method for nonlinear parabolic integro-differential equations, International Journal of Computer Mathematics, 96, 10, 2010-2023 (2018) · Zbl 1499.65487 · doi:10.1080/00207160.2018.1548699
[24] Chen, C.; Liu, W.; Bi, C., A two-grid characteristic finite volume element method for semilinear advection-dominated diffusion equations, Numerical Methods for Partial Differential Equations, 29, 5, 1543-1562 (2013) · Zbl 1274.65252 · doi:10.1002/num.21766
[25] Chen, C.; Zhao, X., A posteriori error estimate for finite volume element method of the parabolic equations, Numerical Methods for Partial Differential Equations, 33, 1, article 259C275, 259-275 (2017) · Zbl 1361.65066 · doi:10.1002/num.22085
[26] Chen, C.; Li, K.; Chen, Y.; Huang, Y., Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations, Advances in Computational Mathematics, 45, 2, 611-630 (2019) · Zbl 1415.65223 · doi:10.1007/s10444-018-9628-2
[27] Chen, C.; Liu, H.; Zheng, X.; Wang, H., A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Computers & Mathematcs with Applications, 79, 9, 2771-2783 (2020) · Zbl 1437.65180 · doi:10.1016/j.camwa.2019.12.008
[28] Zhang, X.; Liu, L.; Wu, Y., Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, Mathematical and Computer Modelling, 55, 3-4, 1263-1274 (2012) · Zbl 1255.34010 · doi:10.1016/j.mcm.2011.10.006
[29] Zhang, X.; Wu, Y.; Caccetta, L., Nonlocal fractional order differential equations with changing-sign singular perturbation, Applied Mathematical Modelling, 39, 21, 6543-6552 (2015) · Zbl 1443.34014 · doi:10.1016/j.apm.2015.02.005
[30] Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., A sufficient and necessary condition of existence of blow-up radial solutions for a k-Hessian equation with a nonlinear operator, Nonlinear Analysis: Modelling and Control, 25, 1, 126-143 (2020) · Zbl 1433.35108 · doi:10.15388/namc.2020.25.15736
[31] Zhang, X.; Xu, J.; Jiang, J.; Wu, Y.; Cui, Y., The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-Hessian equations, Applied Mathematics Letters, 102, article 106124 (2020) · Zbl 1440.35018 · doi:10.1016/j.aml.2019.106124
[32] Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y., The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, Applied Mathematics Letters, 100, article 106018 (2020) · Zbl 1430.35095 · doi:10.1016/j.aml.2019.106018
[33] He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties, Boundary Value Problems, 2019, 1 (2019) · Zbl 1513.34024 · doi:10.1186/s13661-019-1228-7
[34] Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y., Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows, Applied Mathematics Letters, 90, 229-237 (2019) · Zbl 1411.35099 · doi:10.1016/j.aml.2018.11.011
[35] Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, Journal of Mathematical Analysis and Applications, 464, 2, 1089-1106 (2018) · Zbl 1394.35021 · doi:10.1016/j.jmaa.2018.04.040
[36] Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electronic Journal of Differential Equations, 2018, 147, 1-15 (2018) · Zbl 1398.35034
[37] He, J.; Zhang, X.; Liu, L.; Wu, Y., Existence and nonexistence of radial solutions of the Dirichlet problem for a class of general k-Hessian equations, Nonlinear Analysis: Modelling and Control, 23, 4, 475-492 (2018) · Zbl 1418.35014 · doi:10.15388/NA.2018.4.2
[38] Zhang, X.; Wu, Y.; Cui, Y., Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator, Applied Mathematics Letters, 82, 85-91 (2018) · Zbl 1393.35228 · doi:10.1016/j.aml.2018.02.019
[39] Han, Q., Compact Sobolev embeddings and positive solutions to a quasilinear equation with mixed nonlinearities, Journal of Mathematical Analysis and Applications, 481, 2, article 123150 (2020) · Zbl 1431.35039 · doi:10.1016/j.jmaa.2019.04.062
[40] Han, Q., Elliptic variational problems with mixed nonlinearities, Mathematical Methods in the Applied Sciences, 43, 1675-1684 (2019) · Zbl 1447.35164 · doi:10.1002/mma.5993
[41] Han, Q., Positive solutions of elliptic problems involving both critical Sobolev nonlinearities on exterior regions, Monatshefte für Mathematik, 176, 1, 107-141 (2015) · Zbl 1325.35021 · doi:10.1007/s00605-014-0655-x
[42] Han, Q., Compact embedding results of Sobolev spaces and positive solutions to an elliptic equation, Proceedings of the Royal Society of Edinburgh, 146, 4, 693-721 (2016) · Zbl 1362.46038 · doi:10.1017/S0308210515000670
[43] Han, Q., Compact embedding results of Sobolev spaces and existence of positive solutions to quasilinear equations, Bulletin des Sciences Mathematiques, 141, 1, 46-71 (2017) · Zbl 1364.35098 · doi:10.1016/j.bulsci.2015.11.005
[44] Geraghty, M. A., On contractive mappings, Proceedings of the American Mathematical Society, 40, 2, 604-604 (1973) · Zbl 0245.54027 · doi:10.1090/s0002-9939-1973-0334176-5
[45] Guo, D.; Cho, Y. J.; Zhu, J., Partial Ordering Methods in Nonlinear Problems (2004), New York, NY, USA: Nova Science Publ, New York, NY, USA · Zbl 1116.45007
[46] Krasnosel’skii, M. A., Positive Solutions of Operator Equations (1964), Groningen, The Netherlands: Noordhoff, Groningen, The Netherlands · Zbl 0121.10604
[47] Sun, J.; Liu, X., Computation of topological degree in ordered Banach spaces with lattice structure and its application to superlinear differential equations, Journal of Mathematical Analysis and Applications, 348, 2, 927-937 (2008) · Zbl 1177.47065 · doi:10.1016/j.jmaa.2008.05.023
[48] Lin, X.; Zhao, Z., Sign-changing solution for a third-order boundary value problem in ordered Banach space with lattice structure, Boundary Value Problems, 2014, 1 (2014) · Zbl 1309.34029 · doi:10.1186/1687-2770-2014-132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.