×

The motivic zeta functions of a matroid. (English) Zbl 1467.05029

Summary: We introduce motivic zeta functions for matroids. These zeta functions are defined as sums over the lattice points of Bergman fans, and in the realizable case, they coincide with the motivic Igusa zeta functions of hyperplane arrangements. We show that these motivic zeta functions satisfy a functional equation arising from matroid Poincaré duality in the sense of Adiprasito-Huh-Katz [K. Adiprasito et al., Ann. Math. (2) 188, No. 2, 381–452 (2018; Zbl 1442.14194)]. In the process, we obtain a formula for the Hilbert series of the cohomology ring of a matroid, in the sense of E. M. Feichtner and S. Yuzvinsky [Invent. Math. 155, No. 3, 515–536 (2004; Zbl 1083.14059)]. We then show that our motivic zeta functions specialize to the topological zeta functions for matroids introduced by R. van der Veer [Discrete Math. 342, No. 9, 2680–2693 (2019; Zbl 1421.32036)], and we compute the first two coefficients in the Taylor expansion of these topological zeta functions, providing affirmative answers to two questions posed by van der Veer [loc. cit.].

MSC:

05B35 Combinatorial aspects of matroids and geometric lattices
14E18 Arcs and motivic integration
14T15 Combinatorial aspects of tropical varieties
11M99 Zeta and \(L\)-functions: analytic theory

References:

[1] K.Adiprasito, J.Huh and E.Katz, ‘Hodge theory for combinatorial geometries’, Ann. of Math. (2)188 (2018) 381-452. · Zbl 1442.14194
[2] P.Aluffi, ‘Grothendieck classes and Chern classes of hyperplane arrangements’, Int. Math. Res. Not.2013 (2013) 1873-1900. · Zbl 1312.14020
[3] F.Ardila and C. J.Klivans, ‘The Bergman complex of a matroid and phylogenetic trees’, J. Combin. Theory Ser. B96 (2006) 38-49. · Zbl 1082.05021
[4] F.Bittner, ‘The universal Euler characteristic for varieties of characteristic zero’, Compos. Math.140 (2004) 1011-1032. · Zbl 1086.14016
[5] A.Chambert‐Loir, J.Nicaise and J.Sebag, Motivic integration, Progress in Mathematics 325 (Birkhäuser/Springer, New York, NY, 2018). · Zbl 06862764
[6] C.De Concini and C.Procesi, ‘Wonderful models of subspace arrangements’, Selecta Math. (N.S.)1 (1995) 459-494. · Zbl 0842.14038
[7] J.Denef and F.Loeser, ‘Caractéristiques d’Euler‐Poincaré, fonctions zêta locales et modifications analytiques’, J. Amer. Math. Soc.5 (1992) 705-720. · Zbl 0777.32017
[8] J.Denef and F.Loeser, ‘Motivic Igusa zeta functions’, J. Algebraic Geom.7 (1998) 505-537. · Zbl 0943.14010
[9] J.Denef and F.Loeser, ‘Geometry on arc spaces of algebraic varieties’, European congress of mathematics, vol. I, Progress in Mathematics 201 (Birkhäuser, Basel, 2001) 327-348. · Zbl 1079.14003
[10] J.Denef and F.Loeser, ‘Lefschetz numbers of iterates of the monodromy and truncated arcs’, Topology41 (2002) 1031-1040. · Zbl 1054.14003
[11] B.Elias, N.Proudfoot and M.Wakefield, ‘The Kazhdan‐Lusztig polynomial of a matroid’, Adv. Math.299 (2016) 36-70. · Zbl 1341.05250
[12] C.Eur, ‘Divisors on matroids and their volumes’, J. Combin. Theory Ser. A169 (2020) 105135. · Zbl 1428.05149
[13] E.‐M.Feichtner and D. N.Kozlov, ‘Incidence combinatorics of resolutions’, Selecta Math. (N.S.)10 (2004) 37-60. · Zbl 1068.06004
[14] E. M.Feichtner and B.Sturmfels, ‘Matroid polytopes, nested sets and Bergman fans’, Port. Math.62 (2005) 437-468. · Zbl 1092.52006
[15] E. M.Feichtner and S.Yuzvinsky, ‘Chow rings of toric varieties defined by atomic lattices’, Invent. Math.155 (2004) 515-536. · Zbl 1083.14059
[16] D.Helm and E.Katz, ‘Monodromy filtrations and the topology of tropical varieties’, Canad. J. Math.64 (2012) 845-868. · Zbl 1312.14145
[17] I.Itenberg, L.Katzarkov, G.Mikhalkin and I.Zharkov, ‘Tropical homology’, Math. Ann.374 (2019) 963-1006. · Zbl 1460.14146
[18] P.Jell, J.Rau and K.Shaw, ‘Lefschetz (1,1)‐theorem in tropical geometry’, Épijournal Geom. Algébrique2 (2018) 11. · Zbl 1420.14143
[19] M.Kontsevich, ‘String cohomology’, Lecture at Orsay, December 1995.
[20] M.Kutler and J.Usatine, ‘Motivic zeta functions of hyperplane arrangements’, Preprint, 2018, arXiv:1810.11552. · Zbl 1522.14069
[21] L.Lopez de Medrano, F.Rincon and K.Shaw, ‘Chern‐Schwartz‐MacPherson cycles of matroids’, Proc. Lond. Math. Soc.120 (2020) 1-27. · Zbl 1454.14013
[22] P.Nelson, ‘Almost all matroids are nonrepresentable’, Bull. Lond. Math. Soc.50 (2018) 245-248. · Zbl 1384.05065
[23] P.Orlik and L.Solomon, ‘Combinatorics and topology of complements of hyperplanes’, Invent. Math.56 (1980) 167-189. · Zbl 0432.14016
[24] J.Tevelev, ‘Compactifications of subvarieties of tori’, Amer. J. Math.129 (2007) 1087-1104. · Zbl 1154.14039
[25] R.van derVeer, ‘Combinatorial analogs of topological zeta functions’, Discrete Math.342 (2019) 2680-2693. · Zbl 1421.32036
[26] I.Zharkov, ‘The Orlik‐Solomon algebra and the Bergman fan of a matroid’, J. Gökova Geom. Topol. GGT7 (2013) 25-31. · Zbl 1312.14148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.