×

On metric and cohomological properties of Oeljeklaus-Toma manifolds. (English) Zbl 1535.32025

The paper is focused on metric and cohomological features of Oeljeklaus-Toma manifolds. Oeljeklaus-Toma manifolds are generalisations of Inoue-Bombieri surfaces known for serving as counterexamples in various contexts.
Notably, Corollary 3 provides a comprehensive classification of Oeljeklaus-Toma manifolds equipped with pluriclosed metrics. Recall that a metric \(\omega\) over a complex manifold of dimension \(n\) is called pluriclosed (resp. astheno-Kähler, resp. strongly Gauduchon) if \(\partial \bar{\partial} \omega=0\) (resp. \(\partial \bar{\partial} \omega^{n-2}=0\), resp. \(\partial \omega^{n-1}\) is \(\bar{\partial}\)-exact). In Corollary 5 and Proposition 6 the authors show that Oeljeklaus-Toma manifolds never admit astheno-Kähler metrics or strongly Gauduchon metrics. On the cohomological side, they calculate the complex Bott-Chern cohomology of Oeljeklaus-Toma manifolds and their Betti and Hodge numbers when the manifolds admit a pluriclosed metric.
Reviewer: Xiaojun Wu (Nice)

MSC:

32Q55 Topological aspects of complex manifolds
32Q15 Kähler manifolds
57T15 Homology and cohomology of homogeneous spaces of Lie groups

References:

[1] D. Angella, M. Parton, and V. Vuletescu, Rigidity of Oeljeklaus-Toma manifolds, Ann. Inst. Fourier (Grenoble) 70(6) (2020), 2409-2423. DOI: . Digital Object Identifier: 10.5802/aif.3387 Google Scholar: Lookup Link · Zbl 1470.32043 · doi:10.5802/aif.3387
[2] J.-M. Bismut, A local index theorem for non Kähler manifolds, Math. Ann. 284(4) (1989), 681-699. DOI: . Digital Object Identifier: 10.1007/BF01443359 Google Scholar: Lookup Link · Zbl 0666.58042 · doi:10.1007/BF01443359
[3] E. Bombieri, Letter to Kodaira (1973).
[4] O. Braunling, Oeljeklaus-Toma manifolds and arithmetic invariants, Math. Z. 286(1-2) (2017), 291-323. DOI: . Digital Object Identifier: 10.1007/s00209-016-1763-1 Google Scholar: Lookup Link · Zbl 1377.53091 · doi:10.1007/s00209-016-1763-1
[5] G. R. Cavalcanti, Hodge theory of SKT manifolds, Adv. Math. 374 (2020), 107270, 42 pp. DOI: . Digital Object Identifier: 10.1016/j.aim.2020.107270 Google Scholar: Lookup Link · Zbl 1451.53097 · doi:10.1016/j.aim.2020.107270
[6] Ş. Deaconu and V. Vuletescu, On locally conformally Kähler metrics on Oeljeklaus-Toma manifolds, Manuscripta Math. 171(3-4) (2023), 643-647. DOI: . Digital Object Identifier: 10.1007/s00229-022-01403-0 Google Scholar: Lookup Link · Zbl 1516.53062 · doi:10.1007/s00229-022-01403-0
[7] S. Dinew, Pluripotential theory on compact Hermitian manifolds, Ann. Fac. Sci. Toulouse Math. (6) 25(1) (2016), 91-139. DOI: . Digital Object Identifier: 10.5802/afst.1488 Google Scholar: Lookup Link · Zbl 1342.32022 · doi:10.5802/afst.1488
[8] A. Dubickas, Nonreciprocal units in a number field with an application to Oeljeklaus-Toma manifolds, New York J. Math. 20 (2014), 257-274. · Zbl 1290.11148
[9] A. Dubickas, Units in number fields satisfying a multiplicative relation with application to Oeljeklaus-Toma manifolds, Results Math. 76(2) (2021), Paper no. 78, 12 pp. · Zbl 1472.11275
[10] A. Fino, H. Kasuya, and L. Vezzoni, SKT and tamed symplectic structures on solvmanifolds, Tohoku Math. J. (2) 67(1) (2015), 19-37. DOI: . Digital Object Identifier: 10.2748/tmj/1429549577 Google Scholar: Lookup Link · Zbl 1325.32023 · doi:10.2748/tmj/1429549577
[11] A. Fino and A. Tomassini, A survey on strong KT structures, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 52(100), no. 2 (2009), 99-116. · Zbl 1199.53138
[12] A. Fino and A. Tomassini, On astheno-Kähler metrics, J. Lond. Math. Soc. (2) 83(2) (2011), 290-308. DOI: . Digital Object Identifier: 10.1112/jlms/jdq066 Google Scholar: Lookup Link · Zbl 1215.53066 · doi:10.1112/jlms/jdq066
[13] J. Fu, Z. Wang, and D. Wu, Semilinear equations, the \[\gamma_k\] function, and generalized Gauduchon metrics, J. Eur. Math. Soc. (JEMS) 15(2) (2013), 659-680. DOI: . Digital Object Identifier: 10.4171/JEMS/370 Google Scholar: Lookup Link · Zbl 1267.32021 · doi:10.4171/JEMS/370
[14] P. Gauduchon, Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285(5) (1977), A387-A390. · Zbl 0362.53024
[15] D. Grantcharov, G. Grantcharov, and Y. S. Poon, Calabi-Yau connections with torsion on toric bundles, J. Differential Geom. 78(1) (2008), 13-32. DOI: . Digital Object Identifier: 10.4310/jdg/1197320602 Google Scholar: Lookup Link · Zbl 1171.53044 · doi:10.4310/jdg/1197320602
[16] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58. DOI: . Digital Object Identifier: 10.1007/BF01796539 Google Scholar: Lookup Link · Zbl 0444.53032 · doi:10.1007/BF01796539
[17] M. Inoue, On surfaces of Class \[{\text VII}_0\], Invent. Math. 24 (1974), 269-310. DOI: . Digital Object Identifier: 10.1007/BF01425563 Google Scholar: Lookup Link · Zbl 0283.32019 · doi:10.1007/BF01425563
[18] N. Istrati and A. Otiman, De Rham and twisted cohomology of Oeljeklaus-Toma manifolds, Ann. Inst. Fourier (Grenoble) 69(5) (2019), 2037-2066. DOI: . Digital Object Identifier: 10.5802/aif.3288 Google Scholar: Lookup Link · Zbl 1426.53083 · doi:10.5802/aif.3288
[19] S. Ivanov and G. Papadopoulos, Vanishing theorems and string backgrounds, Classical Quantum Gravity 18(6) (2001), 1089-1110. DOI: . Digital Object Identifier: 10.1088/0264-9381/18/6/309 Google Scholar: Lookup Link · Zbl 0990.53078 · doi:10.1088/0264-9381/18/6/309
[20] J. Jost and S.-T. Yau, Correction to: “A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry” [Acta Math. 170(2) (1993), 221-254; MR1226528], Acta Math. 173(2) (1994), 307. DOI: . Digital Object Identifier: 10.1007/BF02398438 Google Scholar: Lookup Link · Zbl 0838.53051 · doi:10.1007/BF02398438
[21] H. Kasuya, Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds, Bull. Lond. Math. Soc. 45(1) (2013), 15-26. DOI: . Digital Object Identifier: 10.1112/blms/bds057 Google Scholar: Lookup Link · Zbl 1262.53061 · doi:10.1112/blms/bds057
[22] H. Kasuya, Remarks on Dolbeault cohomology of Oeljeklaus-Toma manifolds and Hodge theory, Proc. Amer. Math. Soc. 149(7) (2021), 3129-3137. DOI: . Digital Object Identifier: 10.1090/proc/15436 Google Scholar: Lookup Link · Zbl 1486.53082 · doi:10.1090/proc/15436
[23] M. Khovanov and Y. Qi, A faithful braid group action on the stable category of tricomplexes, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper no. 019, 32 pp. DOI: . Digital Object Identifier: 10.3842/SIGMA.2020.019 Google Scholar: Lookup Link · Zbl 1468.20067 · doi:10.3842/SIGMA.2020.019
[24] K. Oeljeklaus and M. Toma, Non-Kähler compact complex manifolds associated to number fields, Ann. Inst. Fourier (Grenoble) 55(1) (2005), 161-171. DOI: . Digital Object Identifier: 10.5802/aif.2093 Google Scholar: Lookup Link · Zbl 1071.32017 · doi:10.5802/aif.2093
[25] A. Otiman, Special Hermitian metrics on Oeljeklaus-Toma manifolds, Bull. Lond. Math. Soc. 54(2) (2022), 655-667. DOI: . Digital Object Identifier: 10.1112/blms.12590 Google Scholar: Lookup Link · Zbl 1522.53060 · doi:10.1112/blms.12590
[26] A. Otiman and M. Toma, Hodge decomposition for Cousin groups and for Oeljeklaus-Toma manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22(2) (2021), 485-503. DOI: . Digital Object Identifier: 10.2422/2036-2145.201812_001 Google Scholar: Lookup Link · Zbl 1480.32003 · doi:10.2422/2036-2145.201812_001
[27] D. Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics, Invent. Math. 194(3) (2013), 515-534. DOI: . Digital Object Identifier: 10.1007/s00222-013-0449-0 Google Scholar: Lookup Link · Zbl 1287.32008 · doi:10.1007/s00222-013-0449-0
[28] V. V. Prasolov, Polynomials, Translated from the 2001 Russian second edition by Dimitry Leites, Algorithms Comput. Math. 11, Springer-Verlag, Berlin, 2010. · Zbl 1272.12001
[29] J. Stelzig, On the structure of double complexes, J. Lond. Math. Soc. (2) 104(2) (2021), 956-988. DOI: . Digital Object Identifier: 10.1112/jlms.12453 Google Scholar: Lookup Link · Zbl 1475.14045 · doi:10.1112/jlms.12453
[30] J. Stelzig, On linear combinations of cohomological invariants of compact complex manifolds, Adv. Math. 407 (2022), Paper no. 108560. DOI: . Digital Object Identifier: 10.1016/j.aim.2022.108560 Google Scholar: Lookup Link · Zbl 1504.32050 · doi:10.1016/j.aim.2022.108560
[31] J. Streets and G. Tian, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN 2010(16) (2010), 3101-3133. DOI: . Digital Object Identifier: 10.1093/imrn/rnp237 Google Scholar: Lookup Link · Zbl 1198.53077 · doi:10.1093/imrn/rnp237
[32] A. Tomassini and S. Torelli, On the cohomology of Oeljeklaus-Toma manifolds, Preprint (2015).
[33] F. Tricerri, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politec. Torino 40(1) (1982), 81-92. · Zbl 0511.53068
[34] S. M. Verbitskaya, Curves on Oeljeklaus-Toma manifolds (Russian), Funktsional. Anal. i Prilozhen. 48(3) (2014), 84-88; translation in: Funct. Anal. Appl. 48(3) (2014), 223-226. DOI: . Digital Object Identifier: 10.1007/s10688-014-0063-y Google Scholar: Lookup Link · Zbl 1314.32028 · doi:10.1007/s10688-014-0063-y
[35] S. Verbitsky, Surfaces on Oeljeklaus-Toma manifolds, Preprint (2013). arXiv:. arXiv: 1306.2456v1
[36] V. Vuletescu, LCK metrics on Oeljeklaus-Toma manifolds versus Kronecker’s theorem, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105), no. 2 (2014), 225-231. · Zbl 1389.11137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.