×

Nonlinear identification of unsteady heat transfer of a cylinder in pulsating cross flow. (English) Zbl 1271.76310

Summary: Unsteady heat transfer of a cylinder in pulsating cross flow is investigated. The heat transfer process is considered as a nonlinear single-input, single-output system, with large amplitude velocity perturbations as “input” and total heat transfer rate from the cylinder surface to the fluid as “output”. Quantitatively accurate, low-order models of the heat source dynamics are obtained with a variety of nonlinear system identification methods from time series data generated with unsteady CFD computations. A polynomial type, equation error identification scheme is found to yield very accurate results. In order to obtain the heat source response function in the frequency domain, the equation error model is converted into the frequency domain using harmonic balance as well as harmonic probing approaches. In the harmonic balance approach, a set of nonlinear algebraic equations is solved for the coefficients of the harmonic ansatz. In the harmonic probing method, a recursive relation is obtained to deliver the higher order transfer functions of the nonlinear heat source. Alternatively, a nonlinear black box identification technique is used to identify the heat source dynamics. It is found to capture the amplitudes of higher harmonics with increased accuracy.

MSC:

76Q05 Hydro- and aero-acoustics
76M12 Finite volume methods applied to problems in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
80A23 Inverse problems in thermodynamics and heat transfer

Software:

FLUENT; NNSYSID

References:

[1] Babuska, R., Fuzzy modeling for control (1998), Kluwer Academic Publishers.: Kluwer Academic Publishers. Boston
[2] Babuska, R.; Verbruggen, H. B., Multiple model approaches to nonlinear modeling and control (1997), Taylor and Francis: Taylor and Francis London (UK)
[3] Bedrosian E, Rice SO. The output properties of Volterra systems driven by harmonic and gaussian inputs. In: Proceedings of the IEEE; 1971.; Bedrosian E, Rice SO. The output properties of Volterra systems driven by harmonic and gaussian inputs. In: Proceedings of the IEEE; 1971.
[4] Billings SA. Identification of nonlinear systems – a survey. In: Proceedings of the IEEE; 1980.; Billings SA. Identification of nonlinear systems – a survey. In: Proceedings of the IEEE; 1980.
[5] Boyd, S.; Chua, L. O., Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Trans Circuits Syst, 32, 1150-1161 (1985) · Zbl 0587.93028
[6] Boyd SP.Volterra series: engineering fundamentals. PhD thesis. Berkeley: University of California 1985.; Boyd SP.Volterra series: engineering fundamentals. PhD thesis. Berkeley: University of California 1985.
[7] Chance, J. E.; Worden, K.; Tomlinson, G. R., Frequency domain analysis of NARX neural networks, J Sound Vib, 213, 5, 915-941 (1998)
[8] Chen, S.; Billings, S. A., Neural networks for non- linear dynamic system modelling and identification, Int J Control, 56 (1992), 319n++346 · Zbl 0764.93021
[9] Culick, F. E.C., Non-linear growth and limiting amplitude of acoustic oscillations in combustion chambers, Combust Sci Technol, 3, 1-16 (1971)
[10] Culick FEC. Unsteady motions in combustion chambers for propulsion systems. RTO-AG-AVT-039; 2006.; Culick FEC. Unsteady motions in combustion chambers for propulsion systems. RTO-AG-AVT-039; 2006.
[11] Dowling, A. P., Nonlinear self-excited oscillations of a ducted flame, J Fluid Mech, 346, 271-290 (1997) · Zbl 0947.76094
[12] Dowling, A. P., The calculation of thermoacoustic oscillations, J Sound Vib, 180, 557-581 (1995)
[13] Durox, D.; Schuller, T.; Noiray, N.; Candel, S., Experimental analysis of nonlinear flame transfer functions for different flame geometries, Proc Combust Inst, 32, 1, 1391-1398 (2009)
[14] Fluent Inc. FLUENT user’s guide. Lebanon, NH; 2005.; Fluent Inc. FLUENT user’s guide. Lebanon, NH; 2005.
[15] Föller S, Selimefendigil F, Polifke W., Linear identification of the unsteady heat transfer of a cylinder in pulsating crossflow. In: International conference on jets, wakes and separated flows; 2008.; Föller S, Selimefendigil F, Polifke W., Linear identification of the unsteady heat transfer of a cylinder in pulsating crossflow. In: International conference on jets, wakes and separated flows; 2008.
[16] Gelb, A.; Velde, W. E.V., Multiple-input describing functions and nonlinear system design (1968), McGraw Hill · Zbl 0177.12602
[17] Hantschk, C.; Vortmeyer, D., Numerical simulation of self-excited thermoacoustic instabilities in a Rijke tube, J Sound Vib, 3, 277, 511-522 (1999)
[18] Heckl, A., Non-linear acoustic effects in the Rijke tube, Acustica, 72, 63-71 (1990)
[19] King, L., On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry, Philos Trans Roy Soc, 373-432 (1914)
[20] Korenberg, M. J.; Bruder, S. B.; McLlroy, P. J., Exact orthogonal kernel estimation from finite data records: extending Wiener’s identification of nonlinear systems, Ann Biomed Eng, 16, 201-214 (1998)
[21] Korenberg, M. J., Parallel cascade identification and kernel estimation for nonlinear systems, Ann Biomed Eng, 19, 429-455 (1991)
[22] Lang, Z. Q.; Billing, S. A., Energy transfer properties of nonlinear systems in the frequency domain, Int J Control, 78, 345-362 (2005) · Zbl 1088.93012
[23] Lee, Y. W.; Schetzen, M., Measurement of the wiener kernels of a non-linear system by cross-correlation, Int J Control, 2, 3, 237-254 (1965)
[24] Li, L. M.; Billings, S. A., Discrete time subharmonic modelling and analysis, Int J Control, 78, 16, 1265-1284 (2005) · Zbl 1090.93003
[25] Lieuwen, T., Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor, J Propul Power, 18, 1, 61-67 (2002)
[26] Lighthill, M. J., The response of laminar skin friction and heat transfer to fluctuations in the stream velocity, Proc Roy Soc A, 224, 1-23 (1954) · Zbl 0058.40703
[27] Lin, C. C., The theory of hydrodynamic stability (1955), Cambridge Univ. Press · Zbl 0068.39202
[28] Ljung, L., System identification: theory for the user (1998), Prentice Hall: Prentice Hall Englewood Cliffs, New Jersey
[29] Matveev, K. I., Energy consideration of the nonlinear effects in a Rijke tube, J Fluids Struct, 18, 6, 783-794 (2003)
[30] McManus, K. R.; Poinsot, T.; Candel, S. M., A review of active control of combustion instabilities, J Prog Energy Combust Sci, 19, 1-29 (1993)
[31] Narendra, K.; Parthasarathy, K., Identification and control of dynamical systems using neural networks, IEEE Trans Neural Networks, 1, 4-27 (1990)
[32] Nicoud, F.; Benoit, L.; Sensiau, C.; Poinsot, T., Acoustic modes in combustors with complex impedances and multidimensional active flames, AIAA J, 45, 2, 426-441 (2007)
[33] Noiray, N.; Durox, D.; Schuller, T.; Candel, S., A unified framework for nonlinear combustion instability analysis based on the flame describing function, J Fluid Mech, 615, 139-167 (2008) · Zbl 1168.76056
[34] Nørgaard, M.; Ravn, O.; Poulsen, N. K., Nnsysid-toolbox for system identification with neural networks. mathematical and computer modelling of dynamical systems, Math Comput Model Dynam Syst, 8, 1, 1-20 (2002)
[35] Nowak, R. D., Nonlinear system identification, Circuits Syst Signal Process, 21, 109-122 (2002)
[36] Pankiewitz, C.; Sattelmayer, T., Time domain simulation of combustion instabilities in annular combustors, Trans ASME - J Eng Gas Turbines Power, 125, 677-685 (2003)
[37] Paparizos, L. G.; Culick, F. E.C., The two-mode approximation to nonlinear acoustics in combustion chambers. I. Exact solution for second order acoustics, Combust Sci Technol, 65, 1, 39-65 (1989)
[38] Pha, D. T., Neural networks for identification, prediction and control (1995), Springer
[39] Polifke W. Combustion instabilities. In: Anthoine J, Hirschberg A, editors, Advances in aeroacoustics and applications. VKI LS 2004-05. Rhode-St-Genèse (BE): Von Karman Institute, March 15-19, 2004.; Polifke W. Combustion instabilities. In: Anthoine J, Hirschberg A, editors, Advances in aeroacoustics and applications. VKI LS 2004-05. Rhode-St-Genèse (BE): Von Karman Institute, March 15-19, 2004.
[40] Polifke W. Numerical techniques for identification of acoustic multi-poles. In: Advances in aeroacoustics and applications. VKI LS 2004-05. Brussels (BE) Von Karman Institute: March 15-19, 2004.; Polifke W. Numerical techniques for identification of acoustic multi-poles. In: Advances in aeroacoustics and applications. VKI LS 2004-05. Brussels (BE) Von Karman Institute: March 15-19, 2004.
[41] Polifke W. System identification for aero- and thermo-acoustic applications. In: Schram C, editor, Advances in aero-acoustics and thermo-acoustics. VKI LS 2011-01. Rhode-St-Genèse (BE): Von Karman Institute; 2011. ISBN:13 978-2-87516-012-6.; Polifke W. System identification for aero- and thermo-acoustic applications. In: Schram C, editor, Advances in aero-acoustics and thermo-acoustics. VKI LS 2011-01. Rhode-St-Genèse (BE): Von Karman Institute; 2011. ISBN:13 978-2-87516-012-6.
[42] Polifke, W.; Gentemann, A. M., Order and realizability of impulse response filters for accurate identification of acoustic multi-ports from transient CFD, J Acoust Vib, 9, 3, 139-148 (2004)
[43] Polifke, W.; Poncet, A.; Paschereit, C. O.; Döbbeling, K., Reconstruction of acoustic transfer matrices by instationary computational fluid dynamics, J Sound Vib, 245, 483-510 (2001)
[44] Rugh, W. J., Nonlinear system theory (1981), The Johns Hopkins University Press · Zbl 0666.93065
[45] Schuller, T.; Ducruix, S.; Durox, D.; Candel, S., Modeling tools for the prediction of premixed flame transfer functions, Proc Combust Inst, 29, 1, 107-113 (2002)
[46] Selimefendigil, F.; Polifke, W., A frequency domain system model with coupled modes for limit cycle prediction of thermoacoustic systems, Int J Spray Comb Dynamics, 3, 3&4, 303-330 (2011)
[47] Selimefendigil F. Identification and analysis of nonlinear heat sources in thermo-acoustic systems. PhD thesis. TU München; 2010.; Selimefendigil F. Identification and analysis of nonlinear heat sources in thermo-acoustic systems. PhD thesis. TU München; 2010.
[48] Shreekrishna; Hemchandra, Santosh; Lieuwen, Tim, Premixed flame response to equivalence ratio perturbations, Combust Theory Model, 14, 5, 681-714 (2010) · Zbl 1216.80018
[49] Sjöberg, J.; Zhang, Q.; Ljung, L.; Benveniste, A.; Delyon, B.; Glorennec, P. Y., Nonlinear black-box modeling in system identification: a unified overview, Automatica, 31, 12, 691-1724 (1995) · Zbl 0846.93018
[50] Söderström, T.; Stoica, P., System identification (1989), Prentice-Hall International: Prentice-Hall International Hemel Hempstead (UK) · Zbl 0714.93056
[51] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its application to modeling and control, IEEE Trans Syst Man Cyber, 15, 1, 116-132 (1985) · Zbl 0576.93021
[52] Telionis, D., Unsteady viscous flows (1981), Springer · Zbl 0484.76054
[53] Veynante, D.; Poinsot, T., Theoretical and numerical combustion (2005), R.T. Edwards, Inc.
[54] Wu, X. F.; Lang, Z. Q.; Billings, S. A., Analysis of the output frequencies of nonlinear systems, IEEE Trans Signal Process, 55, 3239-3246 (2007) · Zbl 1390.93556
[55] Yang, V.; Kim, S. I.; Culick, F. E.C., Triggering of longitudinal pressure oscillations in combustion chambers. I: Nonlinear gasdynamics, Combust Sci Technol, 72, 4, 183-214 (1990)
[56] Zinn, B. T.; Lores, M. E., Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets, Combust Sci Technol, 14, 269-278 (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.