×

A Bayesian scheme for reconstructing obstacles in acoustic waveguides. (English) Zbl 07761541

Summary: In this paper, we investigate inverse obstacle scattering problems in acoustic waveguides with low-frequency data. A Bayesian inference scheme, combining a multi-fidelity strategy and surrogate model with guided modes and a deep neural network is proposed to reconstruct the shapes of unknown scattering objects. First, the inverse problem is reformulated as a statistical inference problem using Bayes’ formula, which provides statistical characteristics of the posterior distribution and quantification of the uncertainties. The well-posedness of the posterior distribution is proved by using the \(f\)-divergence. Subsequently, a Markov Chain Monte Carlo algorithm is used to explore the posterior density. We propose a new multi-fidelity surrogate model to accelerate the sampling procedure while maintaining high accuracy. Our numerical simulations demonstrate that this method not only produces high-quality reconstructions but also substantially reduces computational costs.

MSC:

62F15 Bayesian inference
45Q05 Inverse problems for integral equations
81Q37 Quantum dots, waveguides, ratchets, etc.

Software:

Adam; hIPPYlib
Full Text: DOI

References:

[1] Baggeroer, AB; Kuperman, WA; Mikhalevsky, PN, An overview of matched field methods in ocean acoustics, IEEE J. Ocean. Eng., 18, 4, 401-424 (1993) · doi:10.1109/48.262292
[2] Dhia, ASBB; Dakhia, G.; Hazard, C.; Chorfi, L., Diffraction by a defect in an open waveguide: a mathematical analysis based on a modal radiation condition, SIAM J. Appl. Math., 70, 3, 677-693 (2009) · Zbl 1193.35018 · doi:10.1137/080740155
[3] Snyder, AW; Love, JD, Optical Waveguide Theory (1983), London: Chapman and Hall, London
[4] Bourgeois, L.; Lunéville, E., The linear sampling method in a waveguide: a modal formulation, Inverse Probl., 24, 1, 015018 (2008) · Zbl 1153.35400 · doi:10.1088/0266-5611/24/1/015018
[5] Borcea, L.; Meng, S., Factorization method versus migration imaging in a waveguide, Inverse Probl., 35, 12, 124006 (2019) · Zbl 1458.35472 · doi:10.1088/1361-6420/ab2c9b
[6] Arens, T.; Gintides, D.; Lechleiter, A., Direct and inverse medium scattering in a three-dimensional homogeneous planar waveguide, SIAM J. Appl. Math., 71, 3, 753-772 (2011) · Zbl 1228.35164 · doi:10.1137/100806333
[7] Bourgeois, L.; Lunéville, E., On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Probl., 29, 2, 025017 (2013) · Zbl 1334.74011 · doi:10.1088/0266-5611/29/2/025017
[8] Monk, P.; Selgas, V., Sampling type methods for an inverse waveguide problem, Inverse Probl. Imaging, 6, 4, 709-747 (2012) · Zbl 1263.74023 · doi:10.3934/ipi.2012.6.709
[9] Borcea, L., Nguyen, D.L.: Imaging with electromagnetic waves in terminating waveguides (2015). arXiv preprint arXiv:1510.07062 · Zbl 1348.35312
[10] Meng, S., A sampling type method in an electromagnetic waveguide, Inverse Probl. Imaging, 15, 4, 745-762 (2021) · Zbl 1481.35360 · doi:10.3934/ipi.2021012
[11] Bourgeois, L.; Le Louër, F.; Lunéville, É., On the use of lamb modes in the linear sampling method for elastic waveguides, Inverse Probl., 27, 5, 055001 (2011) · Zbl 1217.35209 · doi:10.1088/0266-5611/27/5/055001
[12] Bourgeois, L.; Lunéville, E., On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Probl., 29, 2, 025017 (2013) · Zbl 1334.74011 · doi:10.1088/0266-5611/29/2/025017
[13] Bourgeois, L.; Fliss, S., On the identification of defects in a periodic waveguide from far field data, Inverse Probl., 30, 9, 095004 (2014) · Zbl 1303.78005 · doi:10.1088/0266-5611/30/9/095004
[14] Chen, J.; Huang, G., A direct imaging method for inverse electromagnetic scattering problem in rectangular waveguide, Commun. Comput. Phys., 23, 5, 1415-1433 (2018) · Zbl 1488.65582 · doi:10.4208/cicp.OA-2017-0048
[15] Li, M.; Zhang, R., Near-field imaging of sound-soft obstacles in periodic waveguides, Inverse Probl. Imaging, 11, 6 (2017) · Zbl 1372.35367
[16] Zhang, R., Spectrum decomposition of translation operators in periodic waveguide, SIAM J. Appl. Math., 81, 1, 233-257 (2021) · Zbl 1461.35178 · doi:10.1137/19M1290942
[17] Zhang, R.; Sun, J., The reconstruction of obstacles in a waveguide using finite elements, J. Comput. Math., 36, 1, 29-46 (2018) · Zbl 1413.78006 · doi:10.4208/jcm.1610-m2016-0559
[18] Stuart, AM, Inverse problems: a bayesian perspective, Acta Numer, 19, 451-559 (2010) · Zbl 1242.65142 · doi:10.1017/S0962492910000061
[19] Kaipio, J.; Somersalo, E., Statistical and Computational Inverse Problems (2006), Berlin: Springer, Berlin · Zbl 1068.65022
[20] Li, Z.; Deng, Z.; Sun, J., Extended-sampling-bayesian method for limited aperture inverse scattering problems, SIAM J. Imag. Sci., 13, 1, 422-444 (2020) · Zbl 1439.78007 · doi:10.1137/19M1270501
[21] Li, Z.; Liu, Y.; Sun, J.; Liwei, X., Quality-bayesian approach to inverse acoustic source problems with partial data, SIAM J. Sci. Comput., 43, 2, A1062-A1080 (2021) · doi:10.1137/20M132345X
[22] Yang, Z.; Gui, X.; Ming, J.; Hu, G., Bayesian approach to inverse time-harmonic acoustic scattering with phaseless far-field data, Inverse Probl., 36, 6, 065012 (2020) · Zbl 1443.76205 · doi:10.1088/1361-6420/ab82ee
[23] Yang, Z.; Gui, X.; Ming, J.; Hu, G., Bayesian approach to inverse time-harmonic acoustic obstacle scattering with phaseless data generated by point source waves, Comput. Methods Appl. Mech. Eng., 386, 114073 (2021) · Zbl 1507.35345 · doi:10.1016/j.cma.2021.114073
[24] Huang, J.; Deng, Z.; Xu, L., A bayesian level set method for an inverse medium scattering problem in acoustics, Inverse Probl. Imaging, 15, 5 (2021) · Zbl 1481.65212
[25] Liu, Y.; Guo, Y.; Sun, J., A deterministic-statistical approach to reconstruct moving sources using sparse partial data, Inverse Probl., 37, 6, 065005 (2021) · Zbl 1466.35369 · doi:10.1088/1361-6420/abf813
[26] Yin, Y.; Yin, W.; Meng, P.; Liu, H., On a hybrid approach for recovering multiple obstacles, Commun. Comput. Phys., 31, 3, 869-892 (2022) · Zbl 1482.62044 · doi:10.4208/cicp.OA-2021-0124
[27] Yin, Y.; Yin, W.; Meng, P.; Liu, H., The interior inverse scattering problem for a two-layered cavity using the bayesian method, Inverse Probl. Imaging, 16, 673-690 (2022) · Zbl 1494.78012 · doi:10.3934/ipi.2021069
[28] Bui-Thanh, T.; Ghattas, O., An analysis of infinite dimensional bayesian inverse shape acoustic scattering and its numerical approximation, SIAM/ASA J. Uncertain. Quant., 2, 1, 203-222 (2014) · Zbl 1306.65270 · doi:10.1137/120894877
[29] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (2019), Berlin: Springer, Berlin · Zbl 1425.35001
[30] Sun, J., Local estimators and bayesian inverse problems with non-unique solutions, Appl. Math. Lett., 132, 108149 (2022) · Zbl 1524.35770 · doi:10.1016/j.aml.2022.108149
[31] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems (2011), Berlin: Springer, Berlin · Zbl 1213.35004
[32] Mishra, S., Ochsner, D., Ruf, A.M., Weber, F.: Well-posedness of bayesian inverse problems for hyperbolic conservation laws (2021). arXiv preprint arXiv:2107.09701
[33] Hosseini, B.; Nigam, N., Well-posed bayesian inverse problems: priors with exponential tails, SIAM/ASA J. Uncertain. Quant., 5, 1, 436-465 (2017) · Zbl 1371.35349 · doi:10.1137/16M1076824
[34] Latz, J., On the well-posedness of bayesian inverse problems, SIAM/ASA J. Uncertain. Quant., 8, 1, 451-482 (2020) · Zbl 1437.49050 · doi:10.1137/19M1247176
[35] Sprungk, B., On the local lipschitz stability of bayesian inverse problems, Inverse Probl., 36, 5 (2020) · Zbl 1469.62216 · doi:10.1088/1361-6420/ab6f43
[36] Yan, L.; Zhou, T., Adaptive multi-fidelity polynomial chaos approach to bayesian inference in inverse problems, J. Comput. Phys., 381, 110-128 (2019) · Zbl 1451.62033 · doi:10.1016/j.jcp.2018.12.025
[37] Yan, L.; Zhou, T., An adaptive surrogate modeling based on deep neural networks for large-scale bayesian inverse problems, Commun. Comput. Phys., 28, 5, 2180-2205 (2020) · Zbl 1482.65206 · doi:10.4208/cicp.OA-2020-0186
[38] Jia, J.; Zhao, Q.; Zongben, X.; Meng, D.; Leung, Y., Variational bayes’ method for functions with applications to some inverse problems, SIAM J. Sci. Comput., 43, 1, A355-A383 (2021) · Zbl 1467.62045 · doi:10.1137/19M130409X
[39] Jia, J.; Li, P.; Meng, D., Stein variational gradient descent on infinite-dimensional space and applications to statistical inverse problems, SIAM J. Numer. Anal., 60, 4, 2225-2252 (2022) · Zbl 1502.65044 · doi:10.1137/21M1440773
[40] Villa, U.; Petra, N.; Ghattas, O., Hippylib: an extensible software framework for large-scale inverse problems governed by PDES: part I: deterministic inversion and linearized bayesian inference, ACM Trans. Math. Softw., 47, 2, 1-34 (2021) · Zbl 07467976 · doi:10.1145/3428447
[41] Jin, B., Fast bayesian approach for parameter estimation, Int. J. Numer. Methods Eng., 76, 2, 230-252 (2008) · Zbl 1195.65199 · doi:10.1002/nme.2319
[42] Peherstorfer, B.; Willcox, K.; Gunzburger, M., Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60, 3, 550-591 (2018) · Zbl 1458.65003 · doi:10.1137/16M1082469
[43] Lehtinen, MS; Paivarinta, L.; Somersalo, E., Linear inverse problems for generalised random variables, Inverse Probl., 5, 4, 599 (1989) · Zbl 0681.60015 · doi:10.1088/0266-5611/5/4/011
[44] Bui-Thanh, T.; Ghattas, O., Analysis of the hessian for inverse scattering problems: I. Inverse shape scattering of acoustic waves, Inverse Probl., 28, 5, 055001 (2012) · Zbl 1239.78006 · doi:10.1088/0266-5611/28/5/055001
[45] Hastings, W.K.: Monte carlo sampling methods using Markov chains and their applications (1970) · Zbl 0219.65008
[46] Metropolis, N.; Ulam, S., The Monte Carlo method, J. Am. Stat. Assoc., 44, 247, 335-341 (1949) · Zbl 0033.28807 · doi:10.1080/01621459.1949.10483310
[47] Guo, L., Sparse approximation of data-driven polynomial chaos expansions: an induced sampling approach, Commun. Math. Res., 36, 2 (2020) · Zbl 1474.65008 · doi:10.4208/cmr.2020-0010
[48] Gao, Yu; Liu, H.; Wang, X.; Zhang, K., On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448, 110771 (2022) · Zbl 1537.78008 · doi:10.1016/j.jcp.2021.110771
[49] Kingma, D.P., Adam, J.B.: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980
[50] Christen, JA; Fox, C., Markov Chain Monte Carlo using an approximation, J. Comput. Graph. Stat., 14, 4, 795-810 (2005) · doi:10.1198/106186005X76983
[51] Efendiev, Y.; Datta-Gupta, A.; Ginting, V.; Ma, X.; Mallick, B., An efficient two-stage Markov Chain Monte Carlo method for dynamic data integration, Water Resour. Res., 41, 12 (2005) · doi:10.1029/2004WR003764
[52] Efendiev, Y.; Hou, T.; Luo, W., Preconditioning Markov Chain Monte Carlo simulations using coarse-scale models, SIAM J. Sci. Comput., 28, 2, 776-803 (2006) · Zbl 1111.65003 · doi:10.1137/050628568
[53] Ginting, V.; Pereira, F.; Presho, M.; Wo, S., Application of the two-stage Markov Chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model, Comput. Geosci., 15, 691-707 (2011) · Zbl 1237.76190 · doi:10.1007/s10596-011-9236-4
[54] Hoang, VH; Schwab, C.; Stuart, AM, Complexity analysis of accelerated MCMC methods for bayesian inversion, Inverse Probl., 29, 8, 085010 (2013) · Zbl 1288.65004 · doi:10.1088/0266-5611/29/8/085010
[55] Stuart, GK; Minkoff, SE; Pereira, F., A two-stage Markov Chain Monte Carlo method for seismic inversion and uncertainty quantification, Geophysics, 84, 6, R1003-R1020 (2019) · doi:10.1190/geo2018-0893.1
[56] Madrigal-Cianci, JP; Nobile, F.; Tempone, R., Analysis of a class of multilevel Markov Chain Monte Carlo algorithms based on independent metropolis-hastings, SIAM ASA J. Uncertain. Quant., 11, 1, 91-138 (2023) · Zbl 1518.35680 · doi:10.1137/21M1420927
[57] Dodwell, TJ; Ketelsen, C.; Scheichl, R.; Teckentrup, AL, A hierarchical multilevel Markov Chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM ASA J. Uncertain. Quant., 3, 1, 1075-1108 (2015) · Zbl 1330.65007 · doi:10.1137/130915005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.