×

Remarks on the diagonal embedding and strong 1-boundedness. (English) Zbl 1536.46050

Summary: We identify a large class of hyperbolic groups whose von Neumann algebras are not strongly 1-bounded: Sela’s hyperbolic towers over \(F_2\) subgroups. We also show that any intermediate subalgebra of the diagonal embedding of \(L(F_2)\) into its ultrapower does not have Property (T).

MSC:

46L10 General theory of von Neumann algebras
20A15 Applications of logic to group theory
20F67 Hyperbolic groups and nonpositively curved groups
22D55 Kazhdan’s property (T), the Haagerup property, and generalizations

References:

[1] C. Anantharaman and S. Popa, An introduction to II 1 factors. https://www.math.ucla.edu/ popa/Books/IIun.pdf
[2] S. André, Acylindrical hyperbolicity and existential closedness. Proc. Amer. Math. Soc. 150 (2022), no. 3, 909-918 Zbl 1511.20169 MR 4375691 · Zbl 1511.20169 · doi:10.1090/proc/15409
[3] S. Atkinson, I. Goldbring, and S. Kunnawalkam Elayavalli, Factorial relative commutants and the generalized Jung property for II 1 factors. Adv. Math. 396 (2022), article no. 108107 Zbl 1487.46068 MR 4370469 · Zbl 1487.46068 · doi:10.1016/j.aim.2021.108107
[4] S. Belinschi and M. Capitaine, Strong convergence of tensor products of independent G.U.E. matrices. 2022, arXiv:2205.07695 · Zbl 1407.46055
[5] R. Boutonnet, I. Chifan, and A. Ioana, II 1 factors with nonisomorphic ultrapowers. Duke Math. J. 166 (2017), no. 11, 2023-2051 Zbl 1384.46040 MR 3694564 · Zbl 1384.46040 · doi:10.1215/00127094-0000017X
[6] M. Brannan and R. Vergnioux, Orthogonal free quantum group factors are strongly 1-bounded. Adv. Math. 329 (2018), 133-156 Zbl 1396.46055 MR 3783410 · Zbl 1396.46055 · doi:10.1016/j.aim.2018.02.007
[7] E. Breuillard, T. Gelander, J. Souto, and P. Storm, Dense embeddings of surface groups. Geom. Topol. 10 (2006), 1373-1389 Zbl 1132.22011 MR 2255501 · Zbl 1132.22011 · doi:10.2140/gt.2006.10.1373
[8] N. P. Brown, K. J. Dykema, and K. Jung, Free entropy dimension in amalgamated free prod-ucts. Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 339-367 Zbl 1158.46045 MR 2439665 · Zbl 1158.46045 · doi:10.1112/plms/pdm054
[9] I. Charlesworth, R. de Santiago, B. Hayes, D. Jekel, S. Kunnawalkam Elayavalli, and B. Nel-son, Strong 1-boundedness, L 2 -Betti numbers, algebraic soficity, and graph products. 2023, arXiv:2305.19463
[10] I. Chifan, A. Ioana, and S. Kunnawalkam Elayavalli, An exotic II 1 factor without property Gamma. Geom. Funct. Anal. (2023), DOI 10.1007/s00039-023-00649-4 · Zbl 1534.46052 · doi:10.1007/s00039-023-00649-4
[11] I. Chifan and T. Sinclair, On the structural theory of II 1 factors of negatively curved groups. Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 1, 1-33 Zbl 1290.46053 MR 3087388 · doi:10.24033/asens.2183
[12] A. Connes and V. Jones, Property T for von Neumann algebras. Bull. London Math. Soc. 17 (1985), no. 1, 57-62 Zbl 1190.46047 MR 766450 · Zbl 1190.46047 · doi:10.1112/blms/17.1.57
[13] J. Fang, L. Ge, and W. Li, Central sequence algebras of von Neumann algebras. Taiwanese J. Math. 10 (2006), no. 1, 187-200 Zbl 1105.46042 MR 2186173 · Zbl 1105.46042 · doi:10.11650/twjm/1500403810
[14] I. Farah, I. Goldbring, B. Hart, and D. Sherman, Existentially closed II 1 factors. Fund. Math. 233 (2016), no. 2, 173-196 Zbl 1436.03213 MR 3466004 · Zbl 1436.03213 · doi:10.4064/fm126-12-2015
[15] I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras I: stability. Bull. Lond. Math. Soc. 45 (2013), no. 4, 825-838 Zbl 1295.03019 MR 3081550 · Zbl 1295.03019 · doi:10.1112/blms/bdt014
[16] I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras II: model theory. Israel J. Math. 201 (2014), no. 1, 477-505 Zbl 1301.03037 MR 3265292 · Zbl 1301.03037 · doi:10.1007/s11856-014-1046-7
[17] I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras III: elementary equiva-lence and II 1 factors. Bull. Lond. Math. Soc. 46 (2014), no. 3, 609-628 Zbl 1303.46049 MR 3210717 · Zbl 1303.46049 · doi:10.1112/blms/bdu012
[18] I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras III: elementary equiva-lence and II 1 factors. Bull. Lond. Math. Soc. 46 (2014), no. 3, 609-628 Zbl 1303.46049 MR 3210717 · Zbl 1303.46049 · doi:10.1112/blms/bdu012
[19] L. Ge, Applications of free entropy to finite von Neumann algebras. II. Ann. of Math. (2) 147 (1998), no. 1, 143-157 Zbl 0924.46050 MR 1609522 · Zbl 0924.46050 · doi:10.2307/120985
[20] I. Goldbring and B. Hart, On the theories of McDuff’s II 1 factors. Int. Math. Res. Not. IMRN 2017 (2017), no. 18, 5609-5628 Zbl 1404.03038 MR 3704741 · Zbl 1404.03038 · doi:10.1093/imrn/rnw180
[21] I. Goldbring, B. Hart, and T. Sinclair, The theory of tracial von Neumann algebras does not have a model companion. J. Symbolic Logic 78 (2013), no. 3, 1000-1004 Zbl 1316.03019 MR 3135510 · Zbl 1316.03019 · doi:10.2178/jsl.7803170
[22] I. Goldbring, D. Jekel, S. Kunnawalkam Elayavalli, and J. Pi, Uniformly Super McDuff II 1 Factors. 2023, arXiv:2303.02809
[23] V. Guirardel, G. Levitt, and R. Sklinos, Towers and the first-order theory of hyperbolic groups. 2020, arXiv:2007.14148
[24] B. Hayes, 1-bounded entropy and regularity problems in von Neumann algebras. Int. Math. Res. Not. IMRN 2018 (2018), no. 1, 57-137 Zbl 1415.46039 MR 3801429 · Zbl 1415.46039 · doi:10.1093/imrn/rnw237
[25] B. Hayes, A random matrix approach to the Peterson-Thom conjecture. Indiana Univ. Math. J. 71 (2022), no. 3, 1243-1297 Zbl 1503.46049 MR 4448584 · Zbl 1503.46049 · doi:10.1512/iumj.2022.71.9386
[26] B. Hayes, D. Jekel, and S. Kunnawalkam Elayavalli, Property (T) and strong 1-boundedness for von Neumann algebras. 2021, arXiv:2107.03278
[27] B. Hayes, D. Jekel, and S. Kunnawalkam Elayavalli, Vanishing first cohomology and strong 1-boundedness for von Neumann algebras. 2021, arXiv:2110.12324
[28] B. Hayes, D. Jekel, B. Nelson, and T. Sinclair, A random matrix approach to absorption in free products. Int. Math. Res. Not. IMRN 2021 (2021), 1919-1979 Zbl 1481.46059 MR 4206601 · Zbl 1481.46059 · doi:10.1093/imrn/rnaa191
[29] G. Higman and E. Scott, Existentially closed groups. London Math. Soc. Monogr. (N.S.) 3, Oxford University Press, New York, 1988 Zbl 0646.20001 MR 960689 · Zbl 0646.20001
[30] D. Jekel, Covering entropy for types in tracial W -algebras. J. Log. Anal. 15 (2023), 2-69 MR 4600403 · Zbl 07725193 · doi:10.4115/jla.2023.15.2
[31] K. Jung, Strongly 1-bounded von Neumann algebras. Geom. Funct. Anal. 17 (2007), no. 4, 1180-1200 Zbl 1146.46034 MR 2373014 · Zbl 1146.46034 · doi:10.1007/s00039-007-0624-9
[32] K. Jung, The rank theorem and L 2 -invariants in free entropy: Global upper bounds. 2016, arXiv:1602.04726
[33] H. J. Keisler, Ultraproducts and saturated models. Nederl. Akad. Wetensch. Proc. Ser. A 67. Indag. Math. 26 (1964), 178-186 Zbl 0199.01101 MR 0168483 · Zbl 0199.01101 · doi:10.1016/S1385-7258(64)50021-9
[34] D. McDuff, Uncountably many II 1 factors. Ann. of Math. (2) 90 (1969), 372-377 Zbl 0184.16902 MR 259625 · Zbl 0184.16902 · doi:10.2307/1970730
[35] D. McDuff, Central sequences and the hyperfinite factor. Proc. London Math. Soc. (3) 21 (1970), 443-461 Zbl 0204.14902 MR 281018 · Zbl 0204.14902 · doi:10.1112/plms/s3-21.3.443
[36] N. Ozawa, Solid von Neumann algebras. Acta Math. 192 (2004), no. 1, 111-117 Zbl 1072.46040 MR 2079600 · Zbl 1072.46040 · doi:10.1007/BF02441087
[37] N. Ozawa and S. Popa, On a class of II 1 factors with at most one Cartan subalgebra. Ann. of Math. (2) 172 (2010), no. 1, 713-749 Zbl 1201.46054 MR 2680430 · Zbl 1201.46054 · doi:10.4007/annals.2010.172.713
[38] C. Perin, Elementary embeddings in torsion-free hyperbolic groups. Ph.D. thesis, Université de Caen Normandie, 2008
[39] C. Perin, Elementary embeddings in torsion-free hyperbolic groups. Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 4, 631-681 Zbl 1245.20052 MR 2919979 · Zbl 1245.20052 · doi:10.24033/asens.2152
[40] J. Peterson, Open problems in operator algebras. https://math.vanderbilt.edu/peters10/problems.html
[41] S. Popa, Orthogonal pairs of -subalgebras in finite von Neumann algebras. J. Operator The-ory 9 (1983), no. 2, 253-268 Zbl 0521.46048 MR 703810 · Zbl 0521.46048
[42] S. Popa and S. Vaes, Unique Cartan decomposition for II 1 factors arising from arbitrary actions of hyperbolic groups. J. Reine Angew. Math. 694 (2014), 215-239 Zbl 1307.46047 MR 3259044 · Zbl 1314.46078 · doi:10.1515/crelle-2012-0104
[43] Z. Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams. Publ. Math. Inst. Hautes Études Sci. (2001), no. 93, 31-105 Zbl 1018.20034 MR 1863735 · Zbl 1018.20034 · doi:10.1007/s10240-001-8188-y
[44] S. Shelah, Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math. 10 (1971), 224-233 Zbl 0224.02045 MR 297554 · Zbl 0224.02045 · doi:10.1007/BF02771574
[45] D. Shlyakhtenko, Von Neumann algebras of sofic groups withˇ. 2/ · Zbl 1513.46125 · doi:10.7900/jot
[46] D 0 are strongly 1-bounded. J. Operator Theory 85 (2021), no. 1, 217-228 Zbl 07606458 MR 4198970 · Zbl 1513.46125 · doi:10.7900/jot
[47] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free proba-bility theory. II. Invent. Math. 118 (1994), no. 3, 411-440 Zbl 0820.60001 MR 1296352 · Zbl 0820.60001 · doi:10.1007/BF01231539
[48] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free prob-ability theory. III. The absence of Cartan subalgebras. Geom. Funct. Anal. 6 (1996), no. 1, 172-199 Zbl 0856.60012 MR 1371236 · Zbl 0856.60012 · doi:10.1007/BF02246772
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.