×

Boolean cumulants and subordination in free probability. (English) Zbl 1537.46053

Summary: Subordination is the basis of the analytic approach to free additive and multiplicative convolution. We extend this approach to a more general setting and prove that the conditional expectation \(\mathbb{E}_\varphi\left[ (z - X - f (X) Y f^\ast (X))^{- 1} | X\right]\) for free random variables \(X,Y\) and a Borel function \(f\) is a resolvent again. This result allows the explicit calculation of the distribution of noncommutative polynomials of the form \(X+f(X)Y f^\ast(X)\). The main tool is a new combinatorial formula for conditional expectations in terms of Boolean cumulants and a corresponding analytic formula for conditional expectations of resolvents, generalizing subordination formulas for both additive and multiplicative free convolutions. In the final section, we illustrate the results with step by step explicit computations and an exposition of all necessary ingredients.

MSC:

46L54 Free probability and free operator algebras
60B20 Random matrices (probabilistic aspects)

References:

[1] Arizmendi, O., Hasebe, T., Lehner, F. and Vargas, C.. Relations between cumulants in noncommutative probability, Adv. Math.282 (2015) 56-92. · Zbl 1319.05019
[2] Belinschi, S. T. and Bercovici, H., Partially defined semigroups relative to multiplicative free convolution, Int. Math. Res. Not. (2) (2005) 65-101. · Zbl 1092.46046
[3] Belinschi, S. T. and Bercovici, H., A new approach to subordination results in free probability, J. Anal. Math.101 (2007) 357-365. · Zbl 1142.46030
[4] Belinschi, S. T., Mai, T. and Speicher, R., Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem, J. Reine Angew. Math.732 (2017) 21-53. · Zbl 1456.60013
[5] Belinschi, S. T. and Nica, A., \( \eta \)-series and a Boolean Bercovici-Pata bijection for bounded \(k\)-tuples, Adv. Math.217(1) (2008) 1-41. · Zbl 1129.46052
[6] Belinschi, S. T., Speicher, R., Treilhard, J. and Vargas, C., Operator-valued free multiplicative convolution: analytic subordination theory and applications to random matrix theory, Int. Math. Res. Not. (14) (2015) 5933-5958. · Zbl 1341.46037
[7] Bercovici, H. and Voiculescu, D., Free convolution of measures with unbounded support, Indiana Univ. Math. J.42(3) (1993) 733-773. · Zbl 0806.46070
[8] Biane, P., Processes with free increments, Math. Z.227(1) (1998) 143-174. · Zbl 0902.60060
[9] Bostan, A., Chyzak, F., Salvy, B., Lecerf, G. and Schost, E., Differential equations for algebraic functions, in ISSAC 2007 (ACM, New York, 2007), pp. 25-32. · Zbl 1190.68085
[10] Brieskorn, E. and Knörrer, H., Plane Algebraic Curves (Birkhäuser Verlag, Basel, 1986). · Zbl 0588.14019
[11] Cébron, G., Free convolution operators and free Hall transform, J. Funct. Anal.265(11) (2013) 2645-2708. · Zbl 1294.46058
[12] Cockle, J., On transcendental and algebraic solution, Philos. Mag.XXI(CXLI) (1861) 379-383.
[13] Conway, J. B., A Course in Operator Theory, , Vol. 21 (American Mathematical Society, Providence, RI, 2000). · Zbl 0936.47001
[14] Cox, D. A., Little, J. and O’Shea, D., Using Algebraic Geometry, 2nd edn. (Springer, New York, 2005). · Zbl 1079.13017
[15] Cox, D. A., Little, J. and O’Shea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, , 4th edn. (Springer, Cham, 2015). · Zbl 1335.13001
[16] Dunford, N. and Schwartz, J. T., Linear Operators. I. General Theory, , Vol. 7 (Interscience Publishers, Inc., New York, 1958), with the assistance of Bade, W. G. and Bartle, R. G.. · Zbl 0084.10402
[17] Ebrahimi-Fard, K. and Patras, F., Cumulants, free cumulants and half-shuffles, Proc. R. Soc. A.471(2176) (2015). · Zbl 1371.46071
[18] Eisenbud, D., Commutative Algebra, , Vol. 150 (Springer-Verlag, New York, 1995). · Zbl 0819.13001
[19] Fevrier, M., Mastnak, M., Nica, A. and Szpojankowski, K., Using Boolean cumulants to study multiplication and anticommutators of free random variables, Trans. Amer. Math. Soc.373 (2020) 7167-7205. · Zbl 1462.46073
[20] Haagerup, U., On Voiculescu’s \(R\)- and \(S\)-transforms for free non-commuting random variables, in Free Probability Theory, , Vol. 12 (American Mathematical Society, Providence, RI, 1997), pp. 127-148. · Zbl 0910.46045
[21] Halmos, P. R., A Hilbert Space Problem Book, 2nd edn., , Vol. 19. (Springer-Verlag, New York, 1982). · Zbl 0496.47001
[22] D. Jekel and W. Liu, An operad of non-commutative independences defined by trees, preprint (2019), arXiv:1901.09158 · Zbl 1472.46068
[23] Kauers, M. and Paule, P., The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates, (Springer, New York, 2011). · Zbl 1225.00001
[24] Lehner, F., Free cumulants and enumeration of connected partitions, European J. Combin.23(8) (2002) 1025-1031. · Zbl 1012.05003
[25] Mingo, J. A. and Speicher, R., Free Probability and Random Matrices, , Vol. 35 (Springer, New York, 2017). · Zbl 1387.60005
[26] Nica, A. and Speicher, R., Lectures on the Combinatorics of Free Probability, , Vol. 335 (Cambridge University Press, Cambridge, 2006). · Zbl 1133.60003
[27] Sturmfels, B., Solving Systems of Polynomial Equations, , Vol. 97 (American Mathematical Society, Providence, RI, 2002). · Zbl 1101.13040
[28] Szpojankowski, K. and Wesołowski, J., Conditional expectations through boolean cumulants and subordination towards a better understanding of the lukacs property in free probability, ALEA, Lat. Am. J. Probab. Math. Stat.17 (2020) 253-272. · Zbl 1454.46061
[29] Takesaki, M., Theory of Operator Algebras. I, , Vol. 124 (Springer-Verlag, Berlin, 2002). · Zbl 0990.46034
[30] Taylor, A. E. and Lay, D. C., Introduction to Functional Analysis, 2nd edn. (John Wiley & Sons, New York, 1980). · Zbl 0501.46003
[31] Vasilchuk, V., Asymptotic distribution of the spectrum of symmetrically deformed unitary invariant random matrix ensemble, in Proc. Int. Conf. Days on Diffraction (IEEE, 2018), pp. 288-293.
[32] Voiculescu, D., Multiplication of certain noncommuting random variables, J. Operator Theory18(2) (1987) 223-235. · Zbl 0662.46069
[33] Voiculescu, D., The analogues of entropy and of Fisher’s information measure in free probability theory. I, Comm. Math. Phys.155(1) (1993) 71-92. · Zbl 0781.60006
[34] Voiculescu, D., The coalgebra of the free difference quotient and free probability, Internat. Math. Res. Not. (2) (2000) 79-106. · Zbl 0952.46038
[35] Voiculescu, D. V., Addition of certain noncommuting random variables, J. Funct. Anal.66(3) (1986) 323-346. · Zbl 0651.46063
[36] Voiculescu, D. V., Dykema, K. J. and Nica, A., Free Random Variables, , Vol. 1 (American Mathematical Society, Providence, RI, 1992). · Zbl 0795.46049
[37] Walker, R. J., Algebraic Curves., Vol. 13 (Princeton University Press, Princeton, N. J., 1950). · Zbl 0039.37701
[38] Woess, W., Nearest neighbour random walks on free products of discrete groups, Boll. Un. Mat. Ital. B (6), 5(3) (1986) 961-982. · Zbl 0627.60012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.