×

A nonlinear eigenvalue problem arising in a nanostructured quantum dot. (English) Zbl 1448.81331

Summary: In this paper we investigate a minimization problem related to the principal eigenvalue of the \(s\)-wave Schrödinger operator. The operator depends nonlinearly on the eigenparameter. We prove the existence of a solution for the optimization problem and the uniqueness will be addressed when the domain is a ball. The optimized solution can be applied to design new electronic and photonic devices based on the quantum dots.

MSC:

81Q37 Quantum dots, waveguides, ratchets, etc.
82D80 Statistical mechanics of nanostructures and nanoparticles
81U20 \(S\)-matrix theory, etc. in quantum theory
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
49K20 Optimality conditions for problems involving partial differential equations

References:

[1] Masumoto, Y.; Takagahara, T., Semiconductor quantum dots: physics, spectroscopy and applications series: nanoscience and technology (2002), Springer-Verlag: Springer-Verlag Berlin
[2] Jaulent, M.; Jean, C., The inverse \(s\)-wave scattering problem for a class of potentials depending on energy, Commun Math Phys, 28, 177-220 (1972)
[3] Henrot, A., Extremum problems for eigenvalues of elliptic operators (2006), Birkhäuser-Verlag: Birkhäuser-Verlag Basel · Zbl 1109.35081
[4] Cuccu, F.; Emamizadeh, B.; Porru, G., Optimization of the first eigenvalue in problems involving the \(p\)-Laplacian, Proc Am Math Soc, 137, 1677-1687 (2009) · Zbl 1163.35025
[5] Cuccu, F.; Porru, G.; Sakaguchi, S., Optimization problems on general classes of rearrangements, Nonlinear Anal, 74, 5554-5565 (2011) · Zbl 1219.35066
[6] Derlet, A.; Gossez, J.-P.; Takáč, P., Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight, J Math Anal Appl, 371, 69-79 (2010) · Zbl 1197.35105
[7] Bahrami, F.; Emamizadeh, B.; Mohammadi, A., Existence of an extremal ground state energy of a nanostructured quantum dot, Nonlinear Anal, 74, 6287-6294 (2011) · Zbl 1231.35127
[8] Wang, F. N.; Wei, Z.-H.; Hwang, T.-M.; Wang, W., A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation, J Comput Phys, 229, 2932-2947 (2010) · Zbl 1187.65034
[9] Li, Y.; Voskoboynikov, O.; Lee, C. P.; Sze, S. M., Energy and coordinate dependent effective mass and confined electron states in quantum dots, Solid State Commun, 120, 79-83 (2001)
[10] Voskoboynikov, O.; Li, Y.; Lu, H.-M.; Shih, C.-F.; Lee, C. P., Energy states and magnetization in nanoscale quantum rings, Phys Rev B, 66, 155306-1-155306-6 (2002)
[11] Burton, G. R., Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann Inst H Poincaré Anal Non Linéaire, 6, 4, 295-319 (1989) · Zbl 0677.49005
[12] Alvino, A.; Trombetti, G.; Lions, P.-L., On optimization problems with prescribed rearrangements, Nonlinear Anal, 13, 185-220 (1989) · Zbl 0678.49003
[13] Lieb, E.; Loss, M., Analysis (2001), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 0966.26002
[14] Voss, H.; Werner, B., A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems, Math Methods Appl Sci, 4, 415-424 (1982) · Zbl 0489.49029
[15] Voss, H., A minimax principle for nonlinear eigenvalue problems with applications to a rational spectral problem in fluid-solid vibration, Appl Math, 48, 607-622 (2003) · Zbl 1099.35076
[16] Turner, R., Some variational principles for a nonlinear eigenvalue problem, J Math Anal Appl, 17, 151-160 (1967) · Zbl 0147.12201
[17] Gilbarg, D.; Trudinger, N. S., Elliptic partial differential equations of second order (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0691.35001
[18] Chanillo, S.; Grieser, D.; Imai, M.; Kurata, K.; Ohnishi, I., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Commun Math Phys, 214, 315-337 (2000) · Zbl 0972.49030
[19] Mohammadi, A.; Bahrami, F.; Mohammadpour, H., Shape dependent energy optimization in quantum dots, Appl Math Lett, 25, 1240-1244 (2012) · Zbl 1251.82073
[20] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1988), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0634.26008
[21] Brothers, J. E.; Ziemer, W. P., Minimal rearrangements of Sobolev functions, J Reine Angew Math, 384, 153-179 (1988) · Zbl 0633.46030
[22] Bers, L.; John, F.; Schechter, M., Partial differential equations, Lectures in applied mathematics, vol. III (1964), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 0514.35001
[23] Federer, H., Geometric measure theory (1969), Springer-Verlag: Springer-Verlag Berlin · Zbl 0176.00801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.