×

Matrices \(A\) such that \(A^{s+1}R\) = \(RA^\ast\) with \(R^k = I\). (English) Zbl 1391.15044

Summary: We study matrices \(A \in \mathbb{C}^{n \times n}\) such that \(A^{s + 1} R = R A^\ast\) where \(R^k = I_n\), and \(s, k\) are nonnegative integers with \(k \geq 2\); such matrices are called \(\{R, s + 1, k, \ast \}\)-potent matrices. The \(s = 0\) case corresponds to matrices such that \(A = R A^\ast R^{- 1}\) with \(R^k = I_n\), and is studied using spectral properties of the matrix \(R\). For \(s \geq 1\), various characterizations of the class of \(\{R, s + 1, k, \ast \}\)-potent matrices and relationships between these matrices and other classes of matrices are presented.

MSC:

15A21 Canonical forms, reductions, classification
15A09 Theory of matrix inversion and generalized inverses
Full Text: DOI

References:

[1] Aleksiejczyk, M.; Smoktunowicz, A., On properties of quadratic matrices, Math. Pannon., 11, 239-248 (2000) · Zbl 0994.15012
[2] Baksalary, O. M., Revisitation of generalized and hypergeneralized projectors, (Schipp, B.; Krämer, W., Statistical Inference, Econometric Analysis and Matrix Algebra-Festschrift in Honour of Götz Trenkler (2008), Springer: Springer Heidelberg), 317-324
[3] Baksalary, J. K.; Baksalary, O. M.; Groß, J., On some linear combinations of hypergeneralized projectors, Linear Algebra Appl., 413, 264-273 (2006) · Zbl 1088.15026
[4] Baksalary, J. K.; Baksalary, O. M.; Liu, X.; Trenkler, G., Further results on generalized and hypergeneralized projectors, Linear Algebra Appl., 429, 1038-1050 (2008) · Zbl 1151.15022
[5] Ben-Israel, A.; Greville, T., Generalized Inverses: Theory and Applications (2003), John Wiley & Sons · Zbl 1026.15004
[6] Benítez, J.; Thome, N., Characterizations and linear combinations of \(k\)-generalized projectors, Linear Algebra Appl., 410, 150-159 (2005) · Zbl 1086.15502
[7] Campbell, S. L.; Meyer, C. D., Generalized Inverse of Linear Transformations (1991), Dover: Dover New York · Zbl 0732.15003
[8] Catral, M.; Lebtahi, L.; Stuart, J.; Thome, N., On a matrix group constructed from an \(\{R, s + 1, k \}\)-potent matrix, Linear Algebra Appl., 461, 200-201 (2014) · Zbl 1314.15005
[9] Doković, D., Unitary similarity of projectors, Aequationes Math., 42, 220-224 (1991) · Zbl 0749.15005
[10] Doković, D.; Szechtman, F.; Zhao, K., An algorithm that carries a square matrix into its transpose by an involutory congruence transformation, Electron. J. Linear Algebra, 10, 320-340 (2003) · Zbl 1055.65056
[11] Farebrother, R. W.; Trenkler, G., On generalized quadratic matrices, Linear Algebra Appl., 410, 244-253 (2005) · Zbl 1086.15504
[12] Groß, J.; Trenkler, G., Generalized and hypergeneralized projectors, Linear Algebra Appl., 264, 463-474 (1997) · Zbl 0887.15024
[13] Hill, R. D.; Waters, S. R., On \(κ\)-Real and \(κ\)-Hermitian Matrices, Linear Algebra Appl., 169, 17-29 (1992) · Zbl 0757.15011
[14] Horn, R.; Johnson, C., Matrix Analysis (2013), Cambridge U. P.: Cambridge U. P. New York · Zbl 1267.15001
[15] Horn, R. A.; Sergeichuk, V. V., Congruences of a square matrix and its transpose, Linear Algebra Appl., 389, 347-353 (2004) · Zbl 1068.15007
[16] Lebtahi, L.; Patrício, P.; Thome, N., Special elements in a ring related to Drazin inverses, Linear Multilinear Algebra, 61, 1017-1027 (2013) · Zbl 1279.15009
[17] Lebtahi, L.; Stuart, J.; Thome, N.; Weaver, J. R., Matrices \(A\) such that \(R A = A^{s + 1} R\) when \(R^k = I\), Linear Algebra Appl., 439, 1017-1023 (2013) · Zbl 1281.15011
[18] Lebtahi, L.; Romero, O.; Thome, N., Characterizations of \(\{K, s + 1 \}\)-potent matrices and applications, Linear Algebra Appl., 436, 293-306 (2012) · Zbl 1232.15003
[19] Lebtahi, L.; Romero, O.; Thome, N., Relations between \(\{K, s + 1 \}\)-potent matrices and different classes of complex matrices, Linear Algebra Appl., 438, 1517-1531 (2013) · Zbl 1264.15019
[20] Lebtahi, L.; Romero, O.; Thome, N., Algorithms for \(\{K, s + 1 \}\)-potent matrix constructions, J. Comput. Appl. Math., 249, 157-162 (2013) · Zbl 1285.15020
[21] Mošić, D.; Djordjević, D., Moore-Penrose-invertible normal and Hermitian elements in rings, Linear Algebra Appl., 431, 732-745 (2009) · Zbl 1186.16046
[22] Mošić, D.; Djordjević, D., Partial isometries and EP elements in rings with involution, Electron. J. Linear Algebra, 18, 761-772 (2009) · Zbl 1192.16039
[23] Petik, T.; Uç, M.; Özdemir, H., Generalized quadraticity of linear combination of two generalized quadratic matrices, Linear Multilinear Algebra, 63, 12, 2430-2439 (2015) · Zbl 1330.15048
[24] Pressman, I. S., Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices, Linear Algebra Appl., 284, 239-258 (1998) · Zbl 0957.15019
[25] Stuart, J.; Weaver, J., Matrices that commute with a permutation matrix, Linear Algebra Appl., 150, 255-265 (1991) · Zbl 0735.15016
[26] Stewart, G. W., A note on generalized and hypergeneralized projectors, Linear Algebra Appl., 412, 408-411 (2006) · Zbl 1088.15027
[27] De Terán, F.; Dopico, F. M.; Guillery, N.; Montealegre, D.; Reyes, N., The solution of the equation \(A X + X^\ast B = 0\), Linear Algebra Appl., 438, 2817-2860 (2013) · Zbl 1264.15016
[28] Tošić, M.; Cvetković-Ilić, D. S., The invertibility of the difference and the sum of commuting generalized and hypergeneralized projectors, Linear Multilinear Algebra, 61, 4, 482-493 (2013) · Zbl 1266.15012
[29] Trench, W. F., Characterization and properties of matrices with \(k\)-involutory symmetries, Linear Algebra Appl., 429, 2278-2290 (2008) · Zbl 1167.15020
[30] Trench, W. F., Characterization and properties of matrices with \(k\)-involutory symmetries II, Linear Algebra Appl., 432, 2782-2797 (2010) · Zbl 1205.15014
[31] Weaver, J., Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues and eigenvectors, Amer. Math. Monthly, 2, 10, 711-717 (1985) · Zbl 0619.15021
[32] Yasuda, M., Some properties of commuting and anti-commuting m-involutions, Acta Math. Sci., 32B, 2, 631-644 (2012) · Zbl 1265.15022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.