×

Shift invariant subspaces in growth spaces and sets of Finite Entropy. (English) Zbl 07846318

Summary: We investigate shift invariant subspaces within the realm of analytic functions in the unit disc, whose radial growth is determined by a majorant \(w\). Our main result offers a complete characterization of the shift invariant subspaces generated by Nevanlinna class functions within the aforementioned class of growth spaces. Our description is expressed in terms of a certain \(w\)-entropy condition, which naturally arises in connection with boundary zero sets for analytic functions in the unit disc, having modulus of continuity not exceeding \(w\) on the unit circle. Furthermore, we utilize our findings to establish a structural theorem on approximation in model spaces.
© 2024 The Authors. Journal of the London Mathematical Society is copyright © London Mathematical Society.

MSC:

30H15 Nevanlinna spaces and Smirnov spaces
47B91 Operators on complex function spaces

References:

[1] A. B.Aleksandrov, Invariant subspaces of shift operators. An axiomatic approach, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)113 (1981), 7-26, 264. · Zbl 0473.47014
[2] A.Aleman, S.Richter, and C.Sundberg, Beurling’s theorem for the Bergman space, Acta Math.177 (1996), 275-310. · Zbl 0886.30026
[3] J.Anderson, J.Fernandez, and A. L.Shields, Inner functions and cyclic vectors in the Bloch space, Trans. Amer. Math. Soc.323 (1991), 429-448. · Zbl 0768.46003
[4] R.Berman, L.Brown, and W.Cohn, Cyclic vectors of bounded characteristic in Bergman spaces, Michigan Math. J.31 (1984), 295-306. · Zbl 0594.30037
[5] R. D.Berman, L.Brown, and W. S.Cohn, Moduli of continuity and generalized BCH sets, Rocky Mountain J. Math.17 (1987), 315-338. · Zbl 0627.30032
[6] A.Borichev, O.El‐Fallah, and A.Hanine, Cyclicity in weighted Bergman type spaces, J. Math. Pures Appl.102 (2014), 1041-1061. · Zbl 1304.30072
[7] A.Borichev, Invariant subspaces of given index in Banach spaces of analytic functions, J. Reine Angew. Math.505 (1998), 23-44. · Zbl 0923.47003
[8] P.Bourdon, Cyclic Nevanlinna class functions in Bergman spaces, Proc. Amer. Math. Soc.93 (1985), 503-506. · Zbl 0526.30034
[9] A.Bourhim, O.El‐Fallah, and K.Kellay, Boundary behaviour of functions of Nevanlinna class, Indiana Univ. Math. J.53 (2004), 347-395. · Zbl 1065.30034
[10] B.Bouya, Closed ideals in analytic weighted Lipschitz algebras, Adv. Math.219 (2008), 1446-1468. · Zbl 1178.46022
[11] L.Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math.87 (1952), 325-345. · Zbl 0046.30005
[12] J.Cima, A.Matheson, and W.Ross, The Cauchy transform, Mathematical Surveys and Monographs, vol. 125, American Mathematical Society, Providence, RI, 2006. · Zbl 1096.30046
[13] P.Duren and A.Schuster, Bergman spaces, Mathematical Surveys and Monographs, vol. 100, American Mathematical Society, Providence, RI, 2004. · Zbl 1059.30001
[14] K.Dyakonov and D.Khavinson, Smooth functions in star‐invariant subspaces, Contemp. Math.393 (2006), 59-66. · Zbl 1104.30035
[15] O.El‐Fallah, K.Kellay, and K.Seip, Cyclicity of singular inner functions from the corona theorem, J. Inst. Math. Jussieu11 (2012), 815-824. · Zbl 1264.30044
[16] J.Garnett, Bounded analytic functions, vol. 236, Springer Science & Business Media, New York, 2007.
[17] J. B.Garnett and D. E.Marshall, Harmonic measure, vol. 2, Cambridge University Press, Cambridge, 2005. · Zbl 1077.31001
[18] D.Girela, C.González, and J. Á.Peláez, Toeplitz operators and division by inner functions, Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, 2006, pp. 85. · Zbl 1141.47023
[19] A.Hanine, Cyclic vectors in Korenblum type spaces, Math. Scand.116 (2015), 53-85. · Zbl 1336.46024
[20] H.Hedenmalm, B.Korenblum, and K.Zhu, Beurling type invariant subspaces of the Bergman spaces, J. London Math. Soc.53 (1996), 601-614. · Zbl 0871.47007
[21] H.Hedenmalm, B.Korenblum, and K.Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer, New York, 2000. · Zbl 0955.32003
[22] O.Ivrii and U.Kreitner, Critical values of inner functions, arXiv:2212.14818, 2022.
[23] O.Ivrii and A.Nicolau, Beurling‐Carleson sets, inner functions and a semi‐linear equation, arXiv:2210.01270, 2022.
[24] B.Korenblum, An extension of the Nevanlinna theory, Acta Math.135 (1975), 187-219. · Zbl 0323.30030
[25] B.Korenblum, A Beurling‐type theorem, Acta Math.138 (1977), 265-293. · Zbl 0354.30024
[26] B.Korenblum, Cyclic elements in some spaces of analytic functions, Bull. Amer. Math. Soc.5 (1981), 317-318. · Zbl 0473.30031
[27] B.Korenblum, On a class of Banach spaces of functions associated with the notion of entropy, Trans. Amer. Math. Soc.290 (1985), 527-553. · Zbl 0616.46024
[28] A.Limani and B.Malman, An abstract approach to approximation in spaces of pseudocontinuable functions, Proc. Amer. Math. Soc.150 (2022), 2509-2519. · Zbl 1497.46031
[29] A.Limani and B.Malman, On model spaces and density of functions smooth on the boundary, Rev. Mat. Iberoam.39 (2022), 1059. · Zbl 1520.30078
[30] B.Malman, Cyclic inner functions in growth classes and applications to approximation problems, Canad. Math. Bull.66 (2023), 1-12.
[31] B.Malman, Revisiting mean‐square approximation by polynomials in the unit disk, arXiv:2304.01400, 2023.
[32] M.Pavlovic, On Dyakonov’s paper equivalent norms on Lipschitz‐type spaces of holomorphic functions, Acta Math.183 (1999), 141. · Zbl 0989.46011
[33] S.Richter and C.Sundberg, Multipliers and invariant subspaces in the Dirichlet space, J. Operator Theory28 (1992), 167-186. · Zbl 0810.46057
[34] J.Roberts, Cyclic inner functions in the Bergman spaces and weak outer functions in \(H^p, 0< p< 1\), Illinois J. Math.29 (1985), 25-38. · Zbl 0562.30041
[35] H.Shapiro, Some remarks on weighted polynomial approximations of holomorphic functions, Math. USSR‐Sbornik2 (1967), 285. · Zbl 0184.09802
[36] N. A.Shirokov, Zero sets for functions from \(\Lambda_\omega \), Zap. Nauchn. Sem. S.‐Peterburg. Otdel. Mat. Inst. Steklov.107 (1982), 178-188. · Zbl 0512.30006
[37] P.Tamrazov, Contour and solid structure properties of holomorphic functions of a complex variable, Russian Math. Surveys28 (1973), 141. · Zbl 0273.30036
[38] B. A.Taylor and D. L.Williams, Ideals in rings of analytic functions with smooth boundary values, Canad. J. Math.22 (1970), 1266-1283. · Zbl 0204.44302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.