×

Super quantum Airy structures. (English) Zbl 1480.81106

The paper under review introduces a supersymmetric generalization of quantum Airy structures, discusses some of the expected properties for the generalization, and present classes of examples.
A quantum Airy structure was introduced by Kontsevich and Soibelman’s paper “Airy structures and symplectic geometry of topological recursion” as a generalization of topological recursion. This was further generalized by Borot-Bouchard-Chidambaram-Creutzig-Noshchenko’s “Higher Airy structures, W algebras and topological recursion”, which we still call a quantum Airy structure.
Let us briefly review the definition of a quantum Airy structure. Let \(V\) be a vector space over \(\mathbb{C}\). Let us discuss the theory as if \(V\) is finite-dimensional; otherwise, one has to be a bit more careful. Let \((e_i)_{i\in I}\) be a basis of \(V\) and \((x_i)_{i\in I}\) be the corresponding basis of linear coordinates of \(V\). Consider the Weyl algebra \(\mathcal{ W}_V^\hbar = \mathbb{C} \left[(x_i) _{i\in I}, (\hbar\partial_{x_i})_{i\in I} \right] [[\hbar ]]\). We set \(\deg \hbar=2\) and \(\deg x_i=1\). In particular, \(\deg \hbar\partial_{x_i}=1\). Then a quantum Airy structure (QAS) is a linear map \(L\colon V\to \mathcal W_V^\hbar \) satisfying
1.
(degree 1 condition) \(L(e_i)=L_i=\hbar \partial_{x_i} + (\text{degree }\geq 2 \text{ terms})\)
2.
(graded Lie ideal condition) \([L_i,L_j] \subset \hbar \mathcal W_V^{\hbar }\cdot \text{span}_{a\in I}(L_a) \)
The original definition of Kontsevich and Soibelman is a particularly nice case where the maximal degree of \(L_i\) is 2, that is, quadratic.
A crucial result in the subject is that for a given quantum Airy structure, there exists a unique partition function \[ F =\sum_{g,n} \sum_{i_1,\cdots,i_n} \frac{\hbar^{g-1} }{n!} F_{g,n}[i_1,\cdots,i_n] x_{i_1}\cdots x_{i_n} \in \hbar^{-1} \text{Sym}^\bullet(V^*)[[ \hbar]], \] such that
1.
for all \(i\), one has \(L_ie^F=0\), and
2.
\(F_{g,0}=0\) for all \(g\) and \(F_{0,1}=F_{0,2}=0\).
In the process of proving the existence and uniqueness, one gets the sense that the partition function should somehow be related to moduli spaces of Riemann surfaces, although precisely identifying how is not an easy question to answer. For instance, one could imagine that these are related to intersection theory of \(\overline{\mathcal{M}}_{g,n}\) or tau functions of integrable hierarchies.
The current paper generalizes a quantum Airy structure by taking a super (or \(\mathbb{Z}/2\)-graded) vector space \(V\) as the initial starting point. Then the authors prove the main result which is the existence and uniqueness of a partition function.
After restricting to the quadratic case, they provide several classes of examples. These are mainly applications/generalizations of the constructions in Anderon-Borot-Chekhov-Orantin “The ABCD of topological recursion” for (super) Lie algebras and (super) Frobenius algebras and Borot-Bouchard-Chidambaram-Creutzig-Noshchenko’s “Higher Airy structures, W algebras and topological recursion” for vertex operator (super) algebras.
The theory of super quantum Airy structures opens up a few exciting research directions: for a partial list of topics, the readers are advised to take a look at the last section where the authors discuss them.

MSC:

81T32 Matrix models and tensor models for quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T27 Continuum limits in quantum field theory
81T70 Quantization in field theory; cohomological methods
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
15B52 Random matrices (algebraic aspects)
17B81 Applications of Lie (super)algebras to physics, etc.

References:

[1] Alexandrov, A.: Cut-and-join description of generalized Brezin-Gross-Witten model. arXiv:1608.01627
[2] Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J.: Weighted Hurwitz numbers and topological recursion. arXiv:1806.09738 · Zbl 1472.37078
[3] Alvarez-Gaume, L.; Itoyama, H.; Manes, JL; Zadra, A., Superloop equations and two-dimensional supergravity, Int. J. Mod. Phys. A, 7, 5337 (1992) · Zbl 0954.81518 · doi:10.1142/S0217751X92002441
[4] Andersen, J.E., Borot, G., Chekhov, L.O., Orantin, N.: The ABCD of topological recursion. arXiv:1703.03307
[5] Andersen, J.E., Borot, G., Orantin, N.: Geometric recursion. arXiv:1711.04729
[6] Barron, K.: Twisted modules for N = 2 supersymmetric vertex operator superalgebras arising from finite automorphisms of the N = 2 Neveu-Schwarz algebra. arXiv:1110.0229
[7] Barron, K.; Vander Werf, N., On permutation-twisted free fermions and two conjectures, J. Phys. Conf. Ser., 474, 012009 (2013) · doi:10.1088/1742-6596/474/1/012009
[8] Becker, K.; Becker, M., Nonperturbative solution of the super-Virasoro constraints, Mod. Phys. Lett. A, 8, 1205 (1993) · Zbl 1021.81787 · doi:10.1142/S0217732393002695
[9] Ben-Zvi, D., Frenkel, E.: Vertex algebras and algebraic curves. In: Mathematical Surveys and Monographs, vol. 88 (2004) · Zbl 1106.17035
[10] Borot, G.: Lecture Notes on Topological Recursion and Geometry. arXiv:1705.09986 · Zbl 1338.81273
[11] Borot, G., Bouchard, V., Chidambaram, N.K., Creutzig, T., Noshchenko, D.: Higher airy structures, \(W\) algebras and topological recursion. arXiv:1812.08738
[12] Borot, G.; Eynard, B., All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, Quantum Topol., 6, 1, 39-138 (2015) · Zbl 1335.57019 · doi:10.4171/QT/60
[13] Borot, G.; Shadrin, S., Blobbed topological recursion: properties and applications, Math. Proc. Camb. Philos. Soc., 162, 1, 39 (2017) · Zbl 1396.14031 · doi:10.1017/S0305004116000323
[14] Bouchard, V., Eynard, B.: Think globally, compute locally. J. High Energy Phys. 02(143) (2013). arXiv:1211.2302 · Zbl 1342.81513
[15] Bouchard, V.; Eynard, B., Reconstructing WKB from topological recursion, J. l’Ecole Polytech. Math., 4, 845-908 (2017) · Zbl 1426.14009 · doi:10.5802/jep.58
[16] Bouchard, V.; Hernández Serrano, D.; Liu, X.; Mulase, M., Mirror symmetry for orbifold Hurwitz numbers, J. Differ. Geom., 98, 3, 375-423 (2014) · Zbl 1315.53100 · doi:10.4310/jdg/1406552276
[17] Bouchard, V.; Hutchinson, J.; Loliencar, P.; Meiers, M.; Rupert, M., A generalized topological recursion for arbitrary ramification, Ann. Henri Poincaré, 15, 1, 143-169 (2014) · Zbl 1291.81212 · doi:10.1007/s00023-013-0233-0
[18] Bouchard, V.; Klemm, A.; Marino, M.; Pasquetti, S., Remodeling the B-model, Commun. Math. Phys., 287, 117 (2009) · Zbl 1178.81214 · doi:10.1007/s00220-008-0620-4
[19] Bouchard, V.; Marino, M., Hurwitz numbers, matrix models and enumerative geometry, Proc. Symp. Pure Math., 78, 263 (2008) · Zbl 1151.14335 · doi:10.1090/pspum/078/2483754
[20] Bouchard, V.; Osuga, K., Supereigenvalue models and topological recursion, J. High Energy Phys., 1804, 138 (2018) · Zbl 1390.83378 · doi:10.1007/JHEP04(2018)138
[21] Bouchard, V., Osuga, K.: \({\cal{N}}=1\) super topological recursion. arXiv:2007.13186 · Zbl 1390.83378
[22] Bouchard, V.; Sulkowski, P., Topological recursion and mirror curves, Adv. Theor. Math. Phys., 16, 5, 1443 (2012) · Zbl 1276.14054 · doi:10.4310/ATMP.2012.v16.n5.a3
[23] Brézin, E.; Gross, D., The external field problem in the large \(N\) limit of QCD, Phys. Lett. B, 97, 120 (1980) · doi:10.1016/0370-2693(80)90562-6
[24] Chekhov, LO; Eynard, B., Matrix eigenvalue model: Feynman graph technique for all genera, J. High Energy Phys., 0612, 026 (2006) · Zbl 1226.81138 · doi:10.1088/1126-6708/2006/12/026
[25] Chekhov, L., Eynard, B., Marchal, O.: Topological expansion of the Bethe ansatz, and quantum algebraic geometry. arXiv:0911.1664 · Zbl 1354.81014
[26] Ciosmak, P.; Hadasz, L.; Jaskolski, Z.; Manabe, M.; Sulkowski, P., From CFT to Ramond super-quantum curves, J. High Energy Phys., 1805, 133 (2018) · Zbl 1391.81155 · doi:10.1007/JHEP05(2018)133
[27] Ciosmak, P.; Hadasz, L.; Manabe, M.; Sulkowski, P., Super-quantum curves from super-eigenvalue models, J. High Energy Phys., 1610, 044 (2016) · Zbl 1390.81419 · doi:10.1007/JHEP10(2016)044
[28] Ciosmak, P., Hadasz, L., Manabe, M., Sulkowski, P.: Singular vector structure of quantum curves. arXiv:1711.08031 · Zbl 1391.81155
[29] Dijkgraaf, R.; Fuji, H.; Manabe, M., The volume conjecture, perturbative knot invariants, and recursion relations for topological strings, Nucl. Phys. B, 849, 166 (2011) · Zbl 1215.81082 · doi:10.1016/j.nuclphysb.2011.03.014
[30] Dijkgraaf, R.; Verlinde, E.; Verlinde, H., Loop equations and Virasoro constraints in nonperturbative 2D quantum gravity, Nucl. Phys. B, 348, 435-456 (1991) · doi:10.1016/0550-3213(91)90199-8
[31] Do, N.; Leigh, O.; Norbury, P., Orbifold Hurwitz numbers and Eynard-Orantin invariants, Math. Res. Lett., 23, 5, 1281-1327 (2016) · Zbl 1371.14061 · doi:10.4310/MRL.2016.v23.n5.a3
[32] Do, N.; Norbury, P., Topological recursion on the Bessel curve, Commun. Number. Theor. Phys., 12, 53 (2018) · Zbl 1419.14035 · doi:10.4310/CNTP.2018.v12.n1.a2
[33] Dubrovin, B., Yang, D., Zagier, D.: On tau-functions for the KdV hierarchy. arXiv:1812.08488
[34] Dunin-Barkowski, P.; Orantin, N.; Shadrin, S.; Spitz, L., Identification of the Givental formula with the spectral curve topological recursion procedure, Commun. Math. Phys., 328, 2, 669-700 (2014) · Zbl 1293.53090 · doi:10.1007/s00220-014-1887-2
[35] Eynard, B.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Number Theory Phys. 8(3) (2014). arXiv:1110.2949 · Zbl 1310.14037
[36] Eynard, B., Mulase, M., Safnuk, B.: The Laplace transform of the cut-and-join equation and the Bouchard-Marino conjecture on Hurwitz numbers. arXiv:0907.5224 · Zbl 1225.14022
[37] Eynard, B.; Orantin, N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys., 1, 2, 347-452 (2007) · Zbl 1161.14026 · doi:10.4310/CNTP.2007.v1.n2.a4
[38] Eynard, B., Orantin, N.: Topological recursion in random matrices and enumerative geometry. J. Phys. A Math. Theor. 42(29) (2009). arXiv:0811.3531 · Zbl 1177.82049
[39] Eynard, B., Orantin, N.: Weil-Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models. arXiv:0705.3600 · Zbl 1177.82049
[40] Eynard, B.; Orantin, N., Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture, Commun. Math. Phys., 337, 2, 483-567 (2015) · Zbl 1365.14072 · doi:10.1007/s00220-015-2361-5
[41] Fang, B.; Liu, C-CM; Zong, Z., All genus open-closed mirror symmetry for affine toric Calabi-Yau 3-orbifolds, Proc. Symp. Pure Math., 93, 1 (2015)
[42] Frenkel, E.: Vertex algebras and algebraic curves. arXiv:math/0007054 · Zbl 0997.17015
[43] Fuks, DB, Cohomology of Infinite-Dimensional Lie Algebras (1986), Berlin: Springer, Berlin · Zbl 0667.17005
[44] Gonźalez, A., Lupercio, E., Segovia, C., Uribe, B.: Orbifold topological quantum field theories in dimension 2. Online Book
[45] Gross, DJ; Witten, E., Possible third order phase transition in the large N lattice gauge theory, Phys. Rev. D, 21, 446-453 (1980) · doi:10.1103/PhysRevD.21.446
[46] Gukov, S.; Sulkowski, P., A-polynomial, B-model, and quantization, J. High Energy Phys., 1202, 070 (2012) · Zbl 1309.81220 · doi:10.1007/JHEP02(2012)070
[47] Hadasz, L., Ruba, B.: Airy structures for semisimple lie algebras. arXiv:1911.10453
[48] Kac, V.G.: A sketch of Lie superalgebra theory. Commun. Math. Phys. 53 (1977) · Zbl 0359.17009
[49] Kac, V., Wang, W.Q.: Vertex operator superalgebras and their representations. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Volume 175 of Contemporary Mathematics. AMS (1994). arXiv:hep-th/9312065 · Zbl 0838.17035
[50] Kaufmann, RM, Second quantized Frobenius agebras, Commun. Math. Phys., 248, 33 (2004) · Zbl 1099.16010 · doi:10.1007/s00220-004-1090-y
[51] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[52] Kontsevich, M., Soibelman, Y.: Airy structures and symplectic geometry of topological recursion. In: Topological Recursion and Its Influence in Analysis, Geometry, and Topology, Volume 100 of Proceedings of Symposia in Pure Mathematics, pp. 433-490. AMS (2018). arXiv:1701.09137 · Zbl 1448.53078
[53] Li, H., Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, J. Pure Appl. Algebra, 109, 2, 143-195 (1996) · Zbl 0854.17035 · doi:10.1016/0022-4049(95)00079-8
[54] Milanov, T.: “\(W\)-algebra constraints and topological recursion for \(A_N\)-singularity,” with an Appendix by Danilo Lewanski. Int. J. Math. 27 (2016). arXiv:1603.00073 · Zbl 1375.14041
[55] Mirzakhani, M., Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., 167, 179-222 (2007) · Zbl 1125.30039 · doi:10.1007/s00222-006-0013-2
[56] Mironov, A., Morozov, A., Semenoff, G.W.: Unitary matrix integrals in the framework of generalized Kontsevich model. 1. Brezin-Gross-Witten model. Int. J. Mod. Phys. A 11, 5031-5080 (1996) · Zbl 1044.81723
[57] Mulase, M., Safnuk, B.: Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy. arXiv:math/0601194 · Zbl 1144.14030
[58] Mulase, M.; Sulkowski, P., Spectral curves and the Schrödinger equations for the Eynard-Orantin recursion, Adv. Theor. Math. Phys., 19, 955 (2015) · Zbl 1342.81458 · doi:10.4310/ATMP.2015.v19.n5.a2
[59] Norbury, P.: A new cohomology class on the moduli space of curves (2017). arXiv:1712.03662
[60] Okounkov, A., Pandharipande, R.: Virasoro constraints for target curves. arXiv:math/0308097 · Zbl 1140.14047
[61] Osuga, K., Topological recursion in the Ramond sector, J. High Energy Phys., 10, 286 (2019) · Zbl 1427.83131 · doi:10.1007/JHEP10(2019)286
[62] Ruba, B., Analyticity of the free energy for quantum Airy structures, J. Phys. A, 53, 8, 085201 (2020) · Zbl 1514.81125 · doi:10.1088/1751-8121/ab69a4
[63] Saad, P., Shenker, S.H., Stanford, D.: JT gravity as a matrix integral. arXiv:1903.11115
[64] Stanford, D., Witten, E.: JT gravity and the ensembles of random matrix theory. arXiv:1907.03363
[65] Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry, vol. 1, pp. 243-310. Lehigh University, Bethlehem (1990) · Zbl 0757.53049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.