×

Locking free isogeometric formulations of curved thick beams. (English) Zbl 1354.74260

Summary: We are interested in this work in methods that alleviate shear and membrane locking, typically involved in thick plates and shells. We investigate the use of higher order NURBS to address static straight and curved Timoshenko beam with several approaches usually used in standard locking free finite elements. Among theses methods, two main new strategies have been developed for NURBS: selective reduced integration and \(\overline{B}\) projection method. Although the simplicity of implementation and the low computational cost suggest that the first method is attractive, this approach is difficult to be generalized to arbitrary polynomial order and continuity. Conversely, the \(\overline{B}\) one offers a global formalism suitable to tackle every NURBS problem and appears then as the most serious concurrent. The resulting NURBS \(\overline{B}\) element, which happens to be equivalent to a NURBS mixed element, provides robust and accurate results. The performance of the two methods is assessed on several numerical examples, and comparisons are made with other published techniques to prove their effectiveness.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)

Software:

NIKE3D; LS-DYNA
Full Text: DOI

References:

[1] Cohen, E.; Lyche, T.; Riesenfeld, R., Discrete B-spline and subdivision techniques in computer aided geometric design and computer graphics, Comput. Graph. Image Process., 14, 87-111 (1980)
[2] Piegl, L.; Tiller, W., The NURBS Book (Monographs in Visual Communication) (1997), Springer-Verlag: Springer-Verlag New York
[3] Farin, G., Curves and Surfaces for CAGD, A Practical Guide (1999), Morgan Kaufmann Publishers
[4] Rogers, D. F., An Introduction to NURBS With Historical Perspective (2001), Academic Press
[5] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley · Zbl 1378.65009
[6] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finte elements NURBS exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[7] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257-5296 (2006) · Zbl 1119.74024
[8] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 5257-5296 (2006) · Zbl 1119.74024
[9] Hughes, T. J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of \(p\)-method finite elements with \(k\)-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104-4124 (2008) · Zbl 1194.74114
[10] Wang, H.; He, Y.; Li, X.; Gu, X.; Qin, H., Polycube splines, Comput. Aided Des., 40, 721-733 (2008) · Zbl 1206.65038
[11] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), John Wiley & Sons Ltd · Zbl 0959.74001
[12] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications Inc. · Zbl 1191.74002
[13] Ashwell, D. G.; Callengher, R. H., Finite Elements for Thin Shells and Curved Members (1976), Wiley: Wiley London · Zbl 0397.73062
[14] Meck, H. R., An accurate polynomial displacement function for finite ring elements, Comput. Struct., 11, 265-269 (1980) · Zbl 0433.73060
[15] Rank, E.; Krause, R.; Preusch, K., On the accuracy of \(p\)-version elements for the Reissner Mindlin plate problem, Int J. Numer. Methods Eng., 43, 51-67 (1998) · Zbl 0937.74069
[16] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: the Reissner-Mindlin Shell, Comput. Methods Appl. Mech. Engrg., 199, 276-289 (2010) · Zbl 1227.74107
[17] Hughes, T. J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301-313 (2010) · Zbl 1227.65029
[18] F. Auricchio, F. Calabro, T.J.R. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, ICES REPORT 12-04, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, January 2012.; F. Auricchio, F. Calabro, T.J.R. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, ICES REPORT 12-04, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, January 2012. · Zbl 1348.65059
[19] Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M., Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Methods Eng., 3, 275-290 (1971) · Zbl 0253.73048
[20] Pawsey, S.; Clough, R., Improved numerical integration of thick shell finite elements, Int. J. Numer. Methods Eng., 3, 5575-5586 (1971) · Zbl 0940.20029
[21] Hughes, T. J.R.; Taylor, R. L.; Kanoknukulchai, W., A simple and efficient finite element for plate bending, Int. J. Numer. Methods Eng., 11, 1529-1543 (1977) · Zbl 0363.73067
[22] Hughes, T. J.R., Equivalence of finite elements for nearly incompressible elasticity, J. Appl. Mech., 44, 181-183 (1977)
[23] Malkus, D. S.; Hughes, T. J.R., Mixed finite element methods-reduced and selective integration techniques: a unification of concepts, Comput. Methods Appl. Mech. Eng., 15, 1, 63-81 (1978) · Zbl 0381.73075
[24] Stolarski, H.; Belytschko, T., Membrane locking and reduced integration for curved element, J. Appl. Mech., 49, 172-178 (1982) · Zbl 0482.73060
[25] Prathap, G.; Bhashyam, G. R., Reduced integration and the shear-flexible beam element, Int. J. Numer. Methods Eng., 18, 172-178 (1982) · Zbl 0473.73084
[26] Flanangan, D.; Belytschko, T., A Uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng., 17, 679-706 (1981) · Zbl 0478.73049
[27] Belytschko, T.; Ong, J.-J.; Liu, W.; Kenedy, J., Hourglass control in linear and non linear problems, Comput. Methods Appl. Mech. Eng., 43, 251-276 (1984) · Zbl 0522.73063
[28] Liu, W.; Belytschko, T., Efficient linear and non linear heat conduction with a quadrilateral element, Int. J. Numer. Methods Eng., 20, 931-948 (1984) · Zbl 0542.65067
[29] Livermore Software Technology Corporation, LS-DYNA Keyword User’s Manual, May 2007.; Livermore Software Technology Corporation, LS-DYNA Keyword User’s Manual, May 2007.
[30] B.N. Maker, NIKE3D a non-linear, implicit, three-dimensional finite element code for solid and structural mechanics, Technical Report UCRL-MA-105268, Rev. 1, Lawrence Livermore National laboratory, University of California, Livermore, 1995.; B.N. Maker, NIKE3D a non-linear, implicit, three-dimensional finite element code for solid and structural mechanics, Technical Report UCRL-MA-105268, Rev. 1, Lawrence Livermore National laboratory, University of California, Livermore, 1995.
[31] J Bathe, K.; Dvorkin, E. N., A four node plate bending element based on Mindlin/Reissner theory and a mixed interpolation, Int. J. Numer. Methods Eng., 21, 367-383 (1985) · Zbl 0551.73072
[32] Bucalem, M. L.; Bathe, K. J., Higher-order MITC general shell elements, Int. J. Numer. Methods Eng., 36, 3729-3754 (1993) · Zbl 0800.73466
[33] Elguedj, T.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R., B-bar an F-bar projection methods for nearly incompressible linear and non linear elasticity and plasticity using higher order NURBS element, Comput. Method Appl. Mech. Engrg., 197, 5257-5296 (2007)
[34] Hughes, T. J.R., Generalization of selective integration procedure to anisotropic and nonlinear media, Int. J. Numer. Methods Engrg., 15, 1413-1418 (1980) · Zbl 0437.73053
[35] Hughes, T. J.R.; Tezduyar, T. E., Finite elements based upon Mindlin plate theory with particular reference to the four node bilinear isoparametric element, J. Appl. Mech. (1981) · Zbl 0459.73069
[36] Simo, J. C.; Hughes, T. J.R., On the variational foundation of assumed strain methods, J. Appl. Mech., 53, 51-54 (1986) · Zbl 0592.73019
[37] Bletzinger, K.-U.; Bischoff, M.; Ramm, E., A unified approach for shear locking free triangular and rectangular shell finite elements, Comput. Struct., 75, 321-334 (2000)
[38] Bischoff, M.; Bletzinger, K.-U., Stabilized DSG plate and shell elements, (Wall, W. A., Trends in Computational Structural Mechanics (2001), CIMNE: CIMNE Barcelona), 253-263
[39] Koschnick, F.; Bischoff, M.; Camprubi, N.; -U Bletzinger, K., The discrete stain gap method and membrane locking, Comput. Method Appl. Mech. Engrg., 194, 2444-2463 (2005) · Zbl 1082.74053
[40] Echter, R.; Bischoff, M., Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. Method Appl. Mech. Engrg., 199, 374-382 (2010) · Zbl 1227.74068
[41] G Kim, J.; Kim, Y. Y., A new higher-order hybrid-mixed curved beam element, Int. J. Numer. Methods Eng., 43, 925-940 (1998) · Zbl 0936.74067
[42] Noor, A. K.; Peters, J. M., Mixed models and reduced/selective integration displacement models for non-linear analysis of curved beams, Int. J. Numer. Methods Eng., 17, 615-631 (1981) · Zbl 0459.73067
[43] Ramesh Babu, C.; Subramanian, G.; Prathap, G., Mechanics of fields consistency in finite element analysis-a penalty function approach, Comput. Struct., 25, 161-173 (1987) · Zbl 0602.73069
[44] Babu, C. R.; Prathap, G., A linear thick curved beam element, Int. J. Numer. Methods Eng., 55, 379-386 (1986) · Zbl 0592.73109
[45] Ishaquddin, Md.; Raveendranath, P.; Reddy, J. N., Flexure and torsion locking phenomena in out-of-plane deformation Timoshenko curved beam element, Finite Elem. Anal. Des., 51, 22-30 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.