×

A homogeneous relaxation low Mach number model. (English) Zbl 1490.35312

Summary: In the present paper, we investigate a new homogeneous relaxation model describing the behaviour of a two-phase fluid flow in a low Mach number regime, which can be obtained as a low Mach number approximation of the well-known HRM. For this specific model, we derive an equation of state to describe the thermodynamics of the two-phase fluid. We prove some theoretical properties satisfied by the solutions of the model, and provide a well-balanced scheme. To go further, we investigate the instantaneous relaxation regime, and prove the formal convergence of this model towards the low Mach number approximation of the well-known HEM. An asymptotic-preserving scheme is introduced to allow numerical simulations of the coupling between spatial regions with different relaxation characteristic times.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q79 PDEs in connection with classical thermodynamics and heat transfer
76T10 Liquid-gas two-phase flows, bubbly flows
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B40 Asymptotic behavior of solutions to PDEs
35B50 Maximum principles in context of PDEs
35B09 Positive solutions to PDEs
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
49M41 PDE constrained optimization (numerical aspects)

Software:

FLICA-OVAP; THYC; CATHARE

References:

[1] G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577-616. · Zbl 1169.76407 · doi:10.1006/jcph.2002.7143
[2] A.S. Almgren, J.B. Bell, C.A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. I. hydrodynamics. Astrophys. J. 637 (2006) 922. · doi:10.1086/498426
[3] A.S. Almgren, J.B. Bell, C.A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. II. energy evolution. Astrophys. J. 649 (2006) 927. · doi:10.1086/507089
[4] A. Ambroso, J.-M. Hérard and O. Hurisse, A method to couple HEM and HRM two-phase flow models. Comput. Fluids 38 (2009) 738-756. · Zbl 1242.76326 · doi:10.1016/j.compfluid.2008.04.016
[5] T. Barberon and P. Helluy, Finite volume simulations of cavitating flows. In: Finite Volumes for Complex Applications, III (Porquerolles, 2002). Lab. Anal. Topol. Probab (2002) 441-448 (electronic). · Zbl 1177.76207
[6] T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832-858. · Zbl 1134.76392
[7] K.H. Bendiksen, D. Maines, R. Moe and S. Nuland, The dynamic two-fluid model OLGA: theory and application. SPE Prod. Eng. 6 (1991) 171-180. · doi:10.2118/19451-PA
[8] M. Bernard, S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Study of a low mach nuclear core model for two-phase flows with phase transition I: stiffened gas law. ESAIM: M2AN 48 (2014) 1639-1679. · Zbl 1304.35529 · doi:10.1051/m2an/2014015
[9] R.A. Berry, J.W. Peterson, H. Zhang, R.C. Martineau, H. Zhao, L. Zou, D. Andrs and J. Hansel, Relap-7 theory manual. Technical report, Idaho National Lab.(INL), Idaho Falls, ID (United States) (2018).
[10] T. Berstad, C. Dørum, J.P. Jakobsen, S. Kragset, H. Li, H. Lund, A. Morin, S.T. Munkejord, M.J. Mølnvik, H.O. Nordhagen and E. Østbya, CO_2 pipeline integrity: a new evaluation methodology. Energy Proc. 4 (2011) 3000-3007. · doi:10.1016/j.egypro.2011.02.210
[11] D. Bestion, The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229-245. · doi:10.1016/0029-5493(90)90294-8
[12] Z. Bilicki and J. Kestin, Physical aspects of the relaxation model in two-phase flow. Proc. R. Soc. London. A. Math. Phys. Sci. 428 (1990) 379-397. · Zbl 0701.76108
[13] H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition. John Wiley & Sons (1985). · Zbl 0989.80500
[14] M. de Lorenzo, Modelling and numerical simulation of metastable two-phase flows. Ph.D. thesis, Université Paris-Saclay (2018).
[15] M. de Lorenzo, P. Lafon, M. Di Matteo, M. Pelanti, J.-M. Seynhaeve and Y. Bartosiewicz, Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int. J. Multiphase Flow 95 (2017) 199-219. · doi:10.1016/j.ijmultiphaseflow.2017.06.001
[16] S. Dellacherie, On a low Mach nuclear core model. ESAIM Proc. 35 (2012) 79-106. · Zbl 1357.76074 · doi:10.1051/proc/201235005
[17] S. Dellacherie, E. Jamelot and O. Lafitte, A simple monodimensional model coupling an enthalpy transport equation and a neutron diffusion equation. Appl. Math. Lett. 62 (2016) 35-41. · Zbl 1352.82031 · doi:10.1016/j.aml.2016.06.008
[18] S. Dellacherie, E. Jamelot, O. Lafitte and R. Mouhamad, Numerical results for the coupling of a simple neutronics diffusion model and a simple hydrodynamics low mach number model. In: IEEE, editor, SYNASC (2016).
[19] S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Accurate steam-water equation of state for two-phase flow LMNC model with phase transition. Appl. Math. Model. 65 (2019) 207-233. · Zbl 1481.76240 · doi:10.1016/j.apm.2018.07.028
[20] P. Downar-Zapolski, Z. Bilicki, L. Bolle and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473-483. · Zbl 1135.76405 · doi:10.1016/0301-9322(95)00078-X
[21] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Part. Differ. Equ. 12 (1987) 1227-1283. · Zbl 0632.76075 · doi:10.1080/03605308708820526
[22] G. Faccanoni, Étude d’un modèle fin de changement de phase liquide-vapeur. Contribution à l’étude de la crise d’ébullition. Ph.D. thesis, École Polytechnique, France (November 2008).
[23] E. Faucher, J.-M. Herard, M. Barret and C. Toulemonde, Computation of flashing flows in variable cross-section ducts. Int. J. Comput. Fluid Dyn. 13 (2000) 365-391. · Zbl 0976.76047 · doi:10.1080/10618560008940907
[24] F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229 (2010) 7625-7648. · Zbl 1202.82066
[25] P. Fillion, A. Chanoine, S. Dellacherie and A. Kumbaro, FLICA-OVAP: A new platform for core thermal-hydraulic studies. Nucl. Eng. Des. 241 (2011) 4348-4358. · doi:10.1016/j.nucengdes.2011.04.048
[26] T. Flåtten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379-2407. · Zbl 1368.76070
[27] J. Gale, I. Tiselj and A. Horvat, Two-fluid model of the waha code for simulations of water hammer transients. Multiphase Sci. Technol. 20 (2008).
[28] J.M. Greenberg and A.-Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. · Zbl 0876.65064 · doi:10.1137/0733001
[29] W. Greiner, L. Neise and H. Stöcker, Thermodynamics and Statistical Mechanics. Springer (1997). · Zbl 0823.73001
[30] L. Gurault and J.-M. Hérard, A two-fluid hyperbolic model in a porous medium. ESAIM: M2AN 44 (2010) 1319-1348. · Zbl 1428.76198 · doi:10.1051/m2an/2010033
[31] P. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331-352. · Zbl 1108.76078 · doi:10.1051/m2an:2006015
[32] O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows. Int. J. Finite 11 (2014) 1-37. · Zbl 1490.76153
[33] O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer. ESAIM: Proc. Surv. 66 (2019) 84-108. · Zbl 1445.76089 · doi:10.1051/proc/201966005
[34] S. Jin, Runge-kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51-67. · Zbl 0840.65098 · doi:10.1006/jcph.1995.1196
[35] S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Math. Univ. Parma (N.S.) 3 (2012) 177-216. · Zbl 1259.82079
[36] A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son and D.S. Stewart, Two-phase modelling of DDT in granular materials: reduced equations. Phys. Fluids 13 (2001) 3002-3024. · Zbl 1184.76268 · doi:10.1063/1.1398042
[37] G. Le Coq, S. Aubry, J. Cahouet, P. Lequesne, G. Nicolas and S. Pastorini, The “THYC” computer code. A finite volume approach for 3 dimensional two-phase flows in tube bundles. Bulletin de la Direction des Etudes et Recherches, Serie A (1989) 61-76.
[38] O. Le Métayer, J. Massoni and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43 (2004) 265-276. · doi:10.1016/j.ijthermalsci.2003.09.002
[39] O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205 (2005) 567-610. · Zbl 1088.76051 · doi:10.1016/j.jcp.2004.11.021
[40] O. Le Métayer and R. Saurel, The Noble-Abel Stiffened-Gas equation of state. Phys. Fluids 28 (2016).
[41] E.W. Lemmon, M.O. McLinden and D.G. Friend, Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg, MD (1998).
[42] G. Linga and T. Flåtten, A hierarchy of non-equilibrium two-phase flow models. ESAIM: Proc. Surv 66 (2019) 109-143. · Zbl 1443.76227 · doi:10.1051/proc/201966006
[43] H. Lund, A hierarchy of relaxation models for two-phase flow. SIAM J. Appl. Math. 72 (2012) 1713-1741. · Zbl 1260.76036 · doi:10.1137/12086368X
[44] A. Majda and K.G. Lamb, Simplified equations for low Mach number combustion with strong heat release. In: Vol. 35 of IMA Vol. Math. Appl. Dynamical Issues in Combustion Theory. Springer-Verlag (1991). · Zbl 0751.76068
[45] J.P. Mañes, V.H. Sánchez Espinoza, S. Chiva Vicent, M. Böttcher and R. Stieglitz, Validation of NEPTUNE-CFD two-phase flow models using experimental data. Sci. Technol. Nucl. Installations 2014 (2014).
[46] H. Mathis, Étude théorique et numérique des écoulements avec transition de phase. Ph.D. thesis, Université de Strasbourg (2010). · Zbl 1227.76002
[47] H. Paillere, C. Viozat, A. Kumbaro and I. Toumi, Comparison of low mach number models for natural convection problems. Heat Mass Transfer 36 (2000) 567-573. · doi:10.1007/s002310000116
[48] L. Quibel, Simulation d’ écoulements diphasiques eau-vapeur en présence d’incondensables. Ph.D. thesis, Université de Strasbourg (2020).
[49] L. Quibel, Simulation of water-vapor two-phase flows with non-condensable gas. Theses, Université de Strasbourg (September 2020).
[50] R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313-350. · Zbl 1147.76060 · doi:10.1017/S0022112008002061
[51] J.W. Spore, et al., TRAC-M/FORTRAN 90 Theory Manual. Los Alamos National Laboratory, Los Alamos, NM. Technical report, NUREG/CR-6724 (2001).
[52] M.D. Thanh and A. Izani Md Ismail, A well-balanced scheme for a one-pressure model of two-phase flows. Phys. Scr. 79 (2009). · Zbl 1279.76019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.