×

Parametrizing Shimura subvarieties of \({\mathrm{A}_1}\) Shimura varieties and related geometric problems. (English) Zbl 1410.11070

Summary: This paper gives a complete parametrization of the commensurability classes of totally geodesic subspaces of irreducible arithmetic quotients of \({X_{a, b} = (\mathbf{H}^2)^a \times (\mathbf{H}^3)^b}\). A special case describes all Shimura subvarieties of type \({\mathrm{A}_1}\) Shimura varieties. We produce, for any \({n\geq 1}\), examples of manifolds/Shimura varieties with precisely \(n\) commensurability classes of totally geodesic submanifolds/Shimura subvarieties. This is in stark contrast with the previously studied cases of arithmetic hyperbolic 3-manifolds and quaternionic Shimura surfaces, where the presence of one commensurability class of geodesic submanifolds implies the existence of infinitely many classes.

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
11F06 Structure of modular groups and generalizations; arithmetic groups
14G35 Modular and Shimura varieties

References:

[1] Borel A., Harish-Chandra.: Arithmetic subgroups of algebraic groups. Ann. of Math. (2) 75, 485-535 (1962) · Zbl 0107.14804 · doi:10.2307/1970210
[2] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), 1-33. · Zbl 0473.57003
[3] T. Chinburg and M. Stover, Geodesic curves on Shimura surfaces, http://arxiv.org/abs/1506.03299. · Zbl 1414.20017
[4] V. Koziarz and J. Maubon, On the equidistribution of totally geodesic submanifolds in locally symmetric spaces and application to boundedness results for negative curves and exceptional divisors, http://arxiv.org/abs/1407.6561. · Zbl 1227.22012
[5] Maclachlan C., Reid A.W.: Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups Math. Proc. Cambridge Philos. Soc. 102, 251-257 (1987) · Zbl 0632.30043 · doi:10.1017/S030500410006727X
[6] Maclachlan C., Reid A.W.: Parametrizing Fuchsian subgroups of the Bianchi groups. Canad. J. Math. 43, 158-181 (1991) · Zbl 0739.20020 · doi:10.4153/CJM-1991-009-1
[7] C. Maclachlan and A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics, 219, Springer-Verlag, Berlin, 2003. · Zbl 1025.57001
[8] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Springer-Verlag, Berlin, 1991. · Zbl 0732.22008
[9] McReynolds D.B.: Geometric spectra and commensurability. Canad. J. Math. 67, 184-197 (2015) · Zbl 1364.20036 · doi:10.4153/CJM-2014-003-9
[10] J. Milne, Introduction to Shimura varieties, http://jmilne.org/math/xnotes/svi.pdf. · Zbl 1148.14011
[11] Möller M., Toledo D.: Bounded negativity of self-intersection numbers of Shimura curves in Shimura surfaces. Algebra Number Theory 9, 897-912 (2015) · Zbl 1327.14122 · doi:10.2140/ant.2015.9.897
[12] I. Reiner, Maximal orders, London Mathematical Society Monographs, London-New York, 1975. · Zbl 0305.16001
[13] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, Berlin, 1980. · Zbl 0422.12008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.