×

Effects of variable-order passive circuit element in Chua circuit. (English) Zbl 1478.94151

Summary: In this paper, the behaviour of a variable-order passive circuit element which is used in Chua chaotic circuit is analysed. Firstly, the behaviour of a circuit with a variable-order memristor is presented. In the generalized Ohm’s law for a memory element, the order of a passive circuit element is defined as a kind of the element, so the circuit shows unusual behaviour. Finally, the chaotic circuit is designed with a variable-order memristor, and the effect of the variable-order element is shown in the Chua circuit. The chaotic circuit model with the novel memristor shows limit-cycle behaviour.

MSC:

94C05 Analytic circuit theory
34C28 Complex behavior and chaotic systems of ordinary differential equations
Full Text: DOI

References:

[1] Abdelouahab, M-S; Lozi, R.; Chua, L., Memfractance: a mathematical paradigm for circuit elements with memory, Int. J. Bifurc. Chaos, 24, 1430023 (2014) · Zbl 1301.94173 · doi:10.1142/S0218127414300237
[2] Atan, O.; Chen, D.; Türk, M., Fractional order PID and application of its circuit model, J. Chin. Inst. Eng., 2016, 1-9 (2016)
[3] Atan, O., Implementation and simulation of fractional order chaotic circuits with time-delay, Analog. Integr. Circuits Signal Process., 96, 485-494 (2018) · doi:10.1007/s10470-018-1189-2
[4] Bao, B-C; Xu, J-P; Zhou, G-H; Ma, Z-H; Zou, L., Chaotic memristive circuit: equivalent circuit realization and dynamical analysis, Chin. Phys. B, 20, 120502 (2011) · doi:10.1088/1674-1056/20/12/120502
[5] Biolek, D.; Biolek, Z.; Biolkova, V., SPICE modeling of memristive, memcapacitative and meminductive systems, IEEE Eur. Conf. Circuit Theory Des., 2009, 249-252 (2009)
[6] Borah, M.; Roy, BK, Dynamics of the fractional-order chaotic PMSG, its stabilisation using predictive control and circuit validation, IET Electr. Power Appl., 11, 707-716 (2017) · doi:10.1049/iet-epa.2016.0506
[7] Cafagna, D.; Grassi, G., On the simplest fractional-order memristor-based chaotic system, Nonlinear Dyn., 70, 1185-1197 (2012) · doi:10.1007/s11071-012-0522-z
[8] Cafagna, D.; Grassi, G., Elegant Chaos in fractional-order system without equilibria, Math. Probl. Eng., 2013, 1-7 (2013) · Zbl 1296.34110 · doi:10.1155/2013/380436
[9] Cafagna, D.; Grassi, G., Chaos in a new fractional-order system without equilibrium points, Commun. Nonlinear Sci. Numer. Simul., 19, 2919-2927 (2014) · Zbl 1510.34007 · doi:10.1016/j.cnsns.2014.02.017
[10] Chua, L., Memristor—the missing circuit element, IEEE Trans. Circuit Theory, 18, 507-519 (1971) · doi:10.1109/TCT.1971.1083337
[11] Chua, L.; Kang, SM, Memristive devices and systems, Proc. IEEE, 1976, 64, 209-223 (1976) · doi:10.1109/PROC.1976.10092
[12] Chua, L., Device modeling via nonlinear circuit elements, IEEE Trans. Circuits Syst., 27, 1014-1044 (1980) · Zbl 0466.94031 · doi:10.1109/TCS.1980.1084742
[13] Chua, L., Nonlinear circuit foundations for nanodevices, part I: the four-element torus, Proc. IEEE, 9, 1830-1859 (2003) · doi:10.1109/JPROC.2003.818319
[14] Jameel, S.; Korasli, C.; Nacaroglu, A., Realization of biquadratic filter by using memristor, 2013 IEEE Int. Conf. Technol. Adv. Electr. Electron. Comput. Eng., 2013, 52-56 (2013)
[15] Jia, HY; Chen, ZQ; Qi, GY, Chaotic characteristics analysis and circuit implementation for a fractional-order system, IEEE Trans. Circuits Syst. I Regul. Pap., 61, 845-53 (2014) · doi:10.1109/TCSI.2013.2283999
[16] Kim, H.; Sah, MP; Yang, C.; Cho, S.; Chua, LO, Memristor emulator for memristor circuit applications, IEEE Trans. Circuits Syst. I Regul. Pap., 59, 2422-2431 (2012) · Zbl 1468.94667 · doi:10.1109/TCSI.2012.2188957
[17] Li, L.; Chew, ZJ, Printed circuit board based memristor in adaptive lowpass filter, Electron. Lett., 48, 1610-1611 (2012) · doi:10.1049/el.2012.2918
[18] Matouk, AE, Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit, Commun. Nonlinear Sci. Numer. Simul., 16, 975-986 (2011) · Zbl 1221.93227 · doi:10.1016/j.cnsns.2010.04.027
[19] Matsumoto, T., A chaotic attractor from Chua’s circuit, IEEE Trans. Circuits Syst., 31, 1055-1058 (1984) · Zbl 0551.94020 · doi:10.1109/TCS.1984.1085459
[20] Muthuswamy, B., Implementing memristor based chaotic circuits, Int. J. Bifurc. Chaos, 20, 1335-1350 (2010) · Zbl 1193.94082 · doi:10.1142/S0218127410026514
[21] Petras, I., Fractional-order memristor-based Chua’s circuit, IEEE Trans. Circuits Syst. II Express Briefs, 57, 975-979 (2010) · doi:10.1109/TCSII.2010.2083150
[22] Pham, V-T; Ouannas, A.; Volos, C.; Kapitaniak, T., A simple fractional-order chaotic system without equilibrium and its synchronization, AEU Int. J. Electron. Commun., 86, 69-76 (2018) · doi:10.1016/j.aeue.2018.01.023
[23] Pu, Y-F; Yuan, X., Fracmemristor: fractional-order memristor, IEEE Access, 4, 1872-1888 (2016) · doi:10.1109/ACCESS.2016.2557818
[24] Radwan, AG; Salama, KN, Fractional-order RC and RL circuits, Circuits Syst. Signal Process., 31, 1901-1915 (2012) · doi:10.1007/s00034-012-9432-z
[25] Sánchez-López, C.; Carrasco-Aguilar, MA; Muñiz-Montero, C., A 16Hz-160kHz memristor emulator circuit, AEU Int. J. Electron. Commun., 69, 1208-1219 (2015) · doi:10.1016/j.aeue.2015.05.003
[26] Sierociuk, D.; Malesza, W.; Macias, M., Derivation, interpretation, and analog modelling of fractional variable order derivative definition, Appl. Math. Model., 39, 3876-3888 (2015) · Zbl 1443.26003 · doi:10.1016/j.apm.2014.12.009
[27] Strukov, DB; Snider, GS; Stewart, DR; Williams, RS, The missing memristor found, Nature, 453, 80-83 (2008) · doi:10.1038/nature06932
[28] Tavares, D.; Almeida, R.; Torres, DFM, Caputo derivatives of fractional variable order: numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35, 69-87 (2016) · Zbl 1538.65275 · doi:10.1016/j.cnsns.2015.10.027
[29] Tavazoei, MS; Haeri, M., Chaotic attractors in incommensurate fractional order systems, Phys. D Nonlinear Phenom., 237, 2628-2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[30] Tavazoei, MS; Haeri, M., A necessary condition for double scroll attractor existence in fractional-order systems, Phys. Lett. A, 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[31] Thomas, A., Memristor-based neural networks, J. Phys. D Appl. Phys., 46, 093001 (2013) · doi:10.1088/0022-3727/46/9/093001
[32] Tian, X-B; Xu, H., The design and simulation of a titanium oxide memristor-based programmable analog filter in a simulation program with integrated circuit emphasis, Chin. Phys. B, 22, 088501 (2013) · doi:10.1088/1674-1056/22/8/088501
[33] Tsirimokou, G.; Psychalinos, C.; Elwakil, A., Design of CMOS Analog Integrated Fractional-Order Circuits, 41-54 (2017), Cham: Springer, Cham
[34] Wu, A.; Wen, S.; Zeng, Z., Synchronization control of a class of memristor-based recurrent neural networks, Inf. Sci. (Ny), 183, 106-116 (2012) · Zbl 1243.93049 · doi:10.1016/j.ins.2011.07.044
[35] Yeşil, A.; Babacan, Y.; Kaçar, F., A new DDCC based memristor emulator circuit and its applications, Microelectron. J., 45, 282-287 (2014) · doi:10.1016/j.mejo.2014.01.011
[36] Zhang, G.; Shen, Y., Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control, Neural Netw., 55, 1-10 (2014) · Zbl 1322.93055 · doi:10.1016/j.neunet.2014.03.009
[37] Zhang, X.; Qi, Y., Design of an assemble-type fractional-order unit circuit and its application in Lorenz system, IET Circuits Devices Syst., 11, 437-445 (2017) · doi:10.1049/iet-cds.2016.0145
[38] Zhao, X.; Sun, Z.; Karniadakis, GE, Second-order approximations for variable order fractional derivatives: algorithms and applications, J. Comput. Phys., 293, 184-200 (2015) · Zbl 1349.65092 · doi:10.1016/j.jcp.2014.08.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.