×

Artin groups of infinite type: trivial centers and acylindrical hyperbolicity. (English) Zbl 1483.20068

Summary: While finite type Artin groups and right-angled Artin groups are well understood, little is known about more general Artin groups. In this paper, we use the action of an infinite type Artin group \(A_{\Gamma}\) on a CAT(0) cube complex to prove that \(A_{\Gamma}\) has trivial center providing \(\Gamma\) is not the star of a single vertex, and is acylindrically hyperbolic providing \(\Gamma\) is not a join.

MSC:

20F36 Braid groups; Artin groups
20F65 Geometric group theory
20F67 Hyperbolic groups and nonpositively curved groups
57M07 Topological methods in group theory

References:

[1] Altobelli, Joe; Charney, Ruth, A geometric rational form for Artin groups of FC type, Geom. Dedicata, 79, 3, 277-289 (2000) · Zbl 1048.20020 · doi:10.1023/A:1005216814166
[2] Behrstock, Jason; Dru\c{t}u, Cornelia; Mosher, Lee, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann., 344, 3, 543-595 (2009) · Zbl 1220.20037 · doi:10.1007/s00208-008-0317-1
[3] Bestvina, Mladen; Bromberg, Ken; Fujiwara, Koji, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes \'{E}tudes Sci., 122, 1-64 (2015) · Zbl 1372.20029 · doi:10.1007/s10240-014-0067-4
[4] Brady, Tom; McCammond, Jon, Braids, posets and orthoschemes, Algebr. Geom. Topol., 10, 4, 2277-2314 (2010) · Zbl 1205.05246 · doi:10.2140/agt.2010.10.2277
[5] Bridson, Martin R.; Haefliger, Andr\'{e}, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319, xxii+643 pp. (1999), Springer-Verlag, Berlin · Zbl 0988.53001 · doi:10.1007/978-3-662-12494-9
[6] Calvez, Matthieu; Wiest, Bert, Acylindrical hyperbolicity and Artin-Tits groups of spherical type, Geom. Dedicata, 191, 199-215 (2017) · Zbl 1423.20028 · doi:10.1007/s10711-017-0252-y
[7] Charney, Ruth; Davis, Michael W., Finite \(K(\pi, 1)\) s for Artin groups. Prospects in topology, Princeton, NJ, 1994, Ann. of Math. Stud. 138, 110-124 (1995), Princeton Univ. Press, Princeton, NJ · Zbl 0930.55006
[8] Charney, Ruth; Davis, Michael W., The \(K(\pi,1)\)-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc., 8, 3, 597-627 (1995) · Zbl 0833.51006 · doi:10.2307/2152924
[9] Ch-Ma I. Chatterji and A. Martin, A note on the acylindrical hyperbolicity of groups acting on CAT(0) cube complexes, arXiv:1610.06864 (2016).
[10] Dehornoy, Patrick, Multifraction reduction I: The 3-Ore case and Artin-Tits groups of type FC, J. Comb. Algebra, 1, 2, 185-228 (2017) · Zbl 1422.20020 · doi:10.4171/JCA/1-2-3
[11] Dehornoy, Patrick, Multifraction reduction II: conjectures for Artin-Tits groups, J. Comb. Algebra, 1, 3, 229-287 (2017) · Zbl 1422.20021 · doi:10.4171/JCA/1-3-1
[12] Deligne, Pierre, Les immeubles des groupes de tresses g\'{e}n\'{e}ralis\'{e}s, Invent. Math., 17, 273-302 (1972) · Zbl 0238.20034 · doi:10.1007/BF01406236
[13] Ellis, Graham; Sk\"{o}ldberg, Emil, The \(K(\pi,1)\) conjecture for a class of Artin groups, Comment. Math. Helv., 85, 2, 409-415 (2010) · Zbl 1192.55011 · doi:10.4171/CMH/200
[14] Gen2 A. Genevois, Acylindrical action on the hyperplanes of a CAT(0) cube complex, arXiv:1610.08759 (2016).
[15] Gen A. Genevois, Hyperbolicities in CAT(0) cube complexes, arXiv:1709.08843 (2017). · Zbl 1472.20090
[16] Godelle, Eddy, Parabolic subgroups of Artin groups of type FC, Pacific J. Math., 208, 2, 243-254 (2003) · Zbl 1063.20040 · doi:10.2140/pjm.2003.208.243
[17] Godelle, Eddy; Paris, Luis, Basic questions on Artin-Tits groups. Configuration spaces, CRM Series 14, 299-311 (2012), Ed. Norm., Pisa · Zbl 1282.20036 · doi:10.1007/978-88-7642-431-1\_13
[18] Godelle, Eddy; Paris, Luis, \(K(\pi,1)\) and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups, Math. Z., 272, 3-4, 1339-1364 (2012) · Zbl 1300.20045 · doi:10.1007/s00209-012-0989-9
[19] Hae Thomas Haettel, Virtually cocompactly cubulated Artin-Tits groups, arXiv:1509.08711 (2015). · Zbl 1499.20103
[20] Haettel, Thomas; Kielak, Dawid; Schwer, Petra, The 6-strand braid group is \({\rm CAT}(0)\), Geom. Dedicata, 182, 263-286 (2016) · Zbl 1347.20044 · doi:10.1007/s10711-015-0138-9
[21] Juh Arye Juh\'asz, On the spherical radical of Artin groups, preprint, 2018.
[22] Martin, Alexandre, On the acylindrical hyperbolicity of the tame automorphism group of \({\rm SL}_2(\mathbb{C})\), Bull. Lond. Math. Soc., 49, 5, 881-894 (2017) · Zbl 1439.20046 · doi:10.1112/blms.12071
[23] Osin, D., Acylindrically hyperbolic groups, Trans. Amer. Math. Soc., 368, 2, 851-888 (2016) · Zbl 1380.20048 · doi:10.1090/tran/6343
[24] Paris, Luis, Parabolic subgroups of Artin groups, J. Algebra, 196, 2, 369-399 (1997) · Zbl 0926.20022 · doi:10.1006/jabr.1997.7098
[25] Paris, Luis, \(K(\pi,1)\) conjecture for Artin groups, Ann. Fac. Sci. Toulouse Math. (6), 23, 2, 361-415 (2014) · Zbl 1306.20040 · doi:10.5802/afst.1411
[26] Tits, J., Normalisateurs de tores. I. Groupes de Coxeter \'{e}tendus, J. Algebra, 4, 96-116 (1966) · Zbl 0145.24703 · doi:10.1016/0021-8693(66)90053-6
[27] vdL H. van der Lek, The homotopy type of complex hyperplane complements, Ph.D. Thesis, University of Nijmegen, Nijmegen, Netherlands, 1983.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.