×

On the Bieri-Neumann-Strebel-Renz \(\Sigma\)-invariants of the Bestvina-Brady groups. (English) Zbl 1497.20056

The \(\Sigma\)-invariants of a group \(H\) are a family of geometric invariants that in particular determine the finiteness properties of all coabelian subgroups of \(H\), that is, subgroups containing the commutator subgroup \([H,H]\). The main result of this paper can be viewed as a generalization of this result to not only understanding the finiteness properties of coabelian subgroups, but also the \(\Sigma\)-invariants of many of the coabelian subgroups themselves. More precisely, given \([H,H]\le K\le H\) with \(H\) of type \(FP_n\) (resp. \(F_n\)), it is a classical result that \(K\) is of type \(FP_n\) (resp. \(F_n\)) if and only if \([\chi]\in\Sigma^n(H,\mathbb{Z})\) (resp. \([\chi]\in\Sigma^n(H)\)) for all characters \(\chi\colon H\to \mathbb{R}\) with \(\chi(K)=0\). (See the paper for definitions and terminology.) The main result here (Theorem 1.1) is that if \(K\) is of type \(FP_n\) (resp. \(F_n\)) and \(\chi\colon K\to\mathbb{R}\) satisfies \(\chi([H,H])=0\), then \([\chi]\in\Sigma^n(K,\mathbb{Z})\) (resp. \([\chi]\in\Sigma^n(K)\)) if and only if \([\mu]\in\Sigma^n(H,\mathbb{Z})\) (resp. \([\mu]\in\Sigma^n(H)\)) for all characters \(\mu\colon H\to\mathbb{R}\) extending \(\chi\). The main application of this result is a computation of the \(\Sigma\)-invariants of Bestvina–Brady subgroups of right-angled Artin groups. Another important, related result (Theorem 1.5) is that if the restriction of a character of a type \(FP_n\) group to a subnormal subgroup of type \(FP_n\) is in the homological \(\Sigma^n\)-invariant of that subgroup, then the original character is in the homological \(\Sigma^n\)-invariant of the group. This has nice applications to permutational wreath products (Corollary 1.6).

MSC:

20J05 Homological methods in group theory
20F65 Geometric group theory

References:

[1] K. Almeida, The BNS-invariant for Artin groups of circuit rank 2, J. Group Theory 21 (2018), no. 2, 189-228. · Zbl 1425.20019
[2] K. Almeida and D. Kochloukova, The \Sigma^1-invariant for Artin groups of circuit rank 1, Forum Math. 27 (2015), no. 5, 2901-2925. · Zbl 1362.20031
[3] L. Bartholdi, Y. de Cornulier and D. H. Kochloukova, Homological finiteness properties of wreath products, Q. J. Math. 66 (2015), no. 2, 437-457. · Zbl 1371.20049
[4] G. Baumslag, A. Myasnikov and V. Remeslennikov, Algebraic geometry over groups. I. Algebraic sets and ideal theory, J. Algebra 219 (1999), no. 1, 16-79. · Zbl 0938.20020
[5] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3, 445-470. · Zbl 0888.20021
[6] R. Bieri, Homological Dimension of Discrete Groups, 2nd ed., Queen Mary College Math. Notes, Queen Mary College, London, 1981.
[7] R. Bieri, Deficiency and the geometric invariants of a group, J. Pure Appl. Algebra 208 (2007), no. 3, 951-959. · Zbl 1175.20044
[8] R. Bieri and R. Geoghegan, Sigma invariants of direct products of groups, Groups Geom. Dyn. 4 (2010), no. 2, 251-261. · Zbl 1214.20047
[9] R. Bieri, R. Geoghegan and D. H. Kochloukova, The sigma invariants of Thompson’s group F, Groups Geom. Dyn. 4 (2010), no. 2, 263-273. · Zbl 1214.20048
[10] R. Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168-195. · Zbl 0526.13003
[11] R. Bieri, W. D. Neumann and R. Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987), no. 3, 451-477. · Zbl 0642.57002
[12] R. Bieri and B. Renz, Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 63 (1988), no. 3, 464-497. · Zbl 0654.20029
[13] R. Blasco-García, J. I. Cogolludo-Agustín and C. Martínez-Pérez, On the Sigma-invariants of even Artin groups of FC-type, J. Pure Appl. Algebra 226 (2022), no. 7, Paper No. 106984. · Zbl 1512.20115
[14] M. R. Bridson, J. Howie, C. F. Miller, III and H. Short, Subgroups of direct products of limit groups, Ann. of Math. (2) 170 (2009), no. 3, 1447-1467. · Zbl 1196.20047
[15] M. R. Bridson, J. Howie, C. F. Miller, III and H. Short, On the finite presentation of subdirect products and the nature of residually free groups, Amer. J. Math. 135 (2013), no. 4, 891-933. · Zbl 1290.20024
[16] T. Delzant, L’invariant de Bieri-Neumann-Strebel des groupes fondamentaux des variétés Kählériennes, Math. Ann. 348 (2010), no. 1, 119-125. · Zbl 1293.32030
[17] L. A. de Mendonça, On the Σ-invariants of wreath products, Pacific J. Math. 298 (2019), no. 1, 113-139. · Zbl 1502.20020
[18] F. Funke and D. Kielak, Alexander and Thurston norms, and the Bieri-Neumann-Strebel invariants for free-by-cyclic groups, Geom. Topol. 22 (2018), no. 5, 2647-2696. · Zbl 1486.20056
[19] R. Gehrke, The higher geometric invariants for groups with sufficient commutativity, Comm. Algebra 26 (1998), no. 4, 1097-1115. · Zbl 0905.20024
[20] O. Kharlampovich and A. Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006), no. 2, 451-552. · Zbl 1110.03020
[21] D. Kielak, The Bieri-Neumann-Strebel invariants via Newton polytopes, Invent. Math. 219 (2020), no. 3, 1009-1068. · Zbl 1480.20101
[22] D. H. Kochloukova, On subdirect products of type \(\rm FP}_{m\) of limit groups, J. Group Theory 13 (2010), no. 1, 1-19. · Zbl 1245.20065
[23] D. H. Kochloukova, On the Bieri-Neumann-Strebel-Renz \Sigma^1-invariant of even Artin groups, Pacific J. Math. 312 (2021), no. 1, 149-169. · Zbl 1535.20266
[24] D. H. Kochloukova and F. F. Lima, Homological finiteness properties of fibre products, Q. J. Math. 69 (2018), no. 3, 835-854. · Zbl 1443.20080
[25] D. H. Kochloukova and F. F. Lima, On the Bieri-Neumann-Strebel-Renz invariants of residually free groups, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 3, 807-829. · Zbl 1530.20172
[26] B. Kuckuck, Subdirect products of groups and the n-(n+1)-(n+2) conjecture, Q. J. Math. 65 (2014), no. 4, 1293-1318. · Zbl 1353.20037
[27] C. Martínez-Pérez, Finite presentability of normal fibre products, J. Pure Appl. Algebra 218 (2014), no. 8, 1373-1384. · Zbl 1339.20043
[28] J. Meier, H. Meinert and L. VanWyk, Higher generation subgroup sets and the Σ-invariants of graph groups, Comment. Math. Helv. 73 (1998), no. 1, 22-44. · Zbl 0899.57001
[29] J. Meier and L. VanWyk, The Bieri-Neumann-Strebel invariants for graph groups, Proc. Lond. Math. Soc. (3) 71 (1995), no. 2, 263-280. · Zbl 0835.20037
[30] H. Meinert, The geometric invariants of direct products of virtually free groups, Comment. Math. Helv. 69 (1994), no. 1, 39-48. · Zbl 0834.20039
[31] H. Meinert, Actions on 2-complexes and the homotopical invariant \Sigma^2 of a group, J. Pure Appl. Algebra 119 (1997), no. 3, 297-317. · Zbl 0879.57010
[32] B. Renz, Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen, PhD Thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main, 1988. · Zbl 0746.20021
[33] B. Renz, Geometric invariants and HNN-extensions, Group Theory (Singapore 1987), De Gruyter, Berlin (1989), 465-484. · Zbl 0662.20021
[34] D. Schütz, On the direct product conjecture for sigma invariants, Bull. Lond. Math. Soc. 40 (2008), no. 4, 675-684. · Zbl 1188.20059
[35] D. Schütz, Novikov homology of HNN-extensions and right-angled Artin groups, Algebr. Geom. Topol. 9 (2009), no. 2, 773-809. · Zbl 1214.20051
[36] Z. Sela, Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal. 16 (2006), no. 3, 707-730. · Zbl 1118.20035
[37] J.-C. Sikorav, Points fixes de difféomorphismes symplectiques, intersectiones de sous- variétés lagrangiennes, et singularités de un-formes fermées, PhD thesis, Université Paris-Sud, Centre d’Orsay, 1987.
[38] J. Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541-543. · Zbl 0122.27301
[39] C. T. C. Wall, Finiteness conditions for \(\rm CW\)-complexes, Ann. of Math. (2) 81 (1965), 56-69. · Zbl 0152.21902
[40] S. Witzel and M. C. B. Zaremsky, The Σ-invariants of Thompson’s group F via Morse theory, Topological Methods in Group Theory, London Math. Soc. Lecture Note Ser. 451, Cambridge University, Cambridge (2018), 173-193. · Zbl 1430.20052
[41] M. C. B. Zaremsky, On the Σ-invariants of generalized Thompson groups and Houghton groups, Int. Math. Res. Not. IMRN 2017 (2017), no. 19, 5861-5896. · Zbl 1404.20035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.