×

Sausages and butcher paper. (English) Zbl 1499.37082

Kang, Nam-Gyu (ed.) et al., Recent progress in mathematics. Singapore: Springer. KIAS Springer Ser. Math. 1, 155-200 (2022).
Summary: For each \(d>1\) the shift locus of degree \(d\), denoted \({\mathcal S}_d\), is the space of normalized degree \(d\) polynomials in one complex variable for which every critical point is in the attracting basin of infinity under iteration. It is a complex analytic manifold of complex dimension \(d-1\). We are able to give an explicit description of \({\mathcal S}_d\) as a contractible complex of spaces, and to describe the pieces in two quite different ways:
(1)
(combinatorial): in terms of dynamical extended laminations; or
(2)
(algebraic): in terms of certain explicit ‘discriminant-like’ affine algebraic varieties.
From this structure one may deduce numerous facts, including that \({\mathcal S}_d\) has the homotopy type of a CW complex of real dimension \(d-1\); and that \({\mathcal S}_3\) and \({\mathcal S}_4\) are \(K(\pi ,1)\mathrm{s}\). The method of proof is rather interesting in its own right. In fact, along the way we discover a new class of complex surfaces (they are complements of certain singular curves in \(\mathbb{C}^2)\) which are homotopic to locally \(\mathrm{CAT}(0)\) complexes; in particular they are \(K(\pi ,1)\mathrm{s}\).
For the entire collection see [Zbl 1496.14003].

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
20F65 Geometric group theory
37-02 Research exposition (monographs, survey articles) pertaining to dynamical systems and ergodic theory

References:

[1] Blanchard, P.; Devaney, RL; Keen, L., The dynamics of complex polynomials and automorphisms of the shift, Invent. Math., 104, 545-580 (1991) · Zbl 0729.58025 · doi:10.1007/BF01245090
[2] A. Blokh, L. Oversteegen, R. Ptacek, V. Timorin, Laminational models for some spaces of polynomials of any degree. Mem. Amer. Math. Soc. 265(1288) (2020) · Zbl 1508.37008
[3] Böttcher, L., The principal laws of convergence of iterates and their application to analysis (Russian), Izv. Kazan. Fiz.-Mat. Obshch., 14, 137-152 (1904)
[4] Boyle, M.; Franks, J.; Kitchens, B., Automorphisms of the one-sided shift and subshifts of finite type, Erg. Thy. Dyn. Sys., 10, 421-449 (1990) · Zbl 0695.54029 · doi:10.1017/S0143385700005678
[5] Brady, T.; McCammond, J., Braids, posets and orthoschemes, Algebr. Geom. Topol., 10, 4, 2277-2314 (2010) · Zbl 1205.05246 · doi:10.2140/agt.2010.10.2277
[6] B. Branner, Cubic polynomials: turning around the connectedness locus, in Topological Methods in Modern Mathematics, ed. by L. Goldberg, A. Phillips (Publish or Perish 1993), pp. 391-427 · Zbl 0801.58024
[7] B. Branner, J. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space. Acta Math. 160(3-4), 143-206 (1988) · Zbl 0668.30008
[8] B. Branner, J. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns. Acta Math. 169(3-4), 229-325 (1992) · Zbl 0812.30008
[9] M. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature. Grund. der Math. Wiss., vol. 319 (Springer, Berlin, 1999) · Zbl 0988.53001
[10] Brown, K., Buildings (1988), Berlin: Springer, Berlin · Zbl 0715.20017
[11] D. Calegari, Circular groups, planar groups, and the Euler class, in Proceedings of the Casson Fest. Geometry & Topology Monographs, vol. 7 (Geometry & Topology Publication, Conventry, 2004), pp. 431-491 · Zbl 1181.57022
[12] D. Calegari, Combinatorics of the Tautological Lamination. To appear · Zbl 07864443
[13] D. Calegari, Shifty. Computer program; Source available on request
[14] A. de Carvalho, T. Hall, Riemann surfaces out of paper. Proc. Lond. Math. Soc. (3) 108(3), 541-574 (2014) · Zbl 1296.30048
[15] Cerf, J., La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Haut. Études Sci. Publ. Math., 39, 51-73 (1970) · Zbl 0213.25202
[16] J. Corson, Complexes of groups. Proc. Lond. Math. Soc. (3) 65(1), 199-224 (1992) · Zbl 0792.57004
[17] Coxeter, H., Regular Polytopes (1973), New York: Dover Publications Inc, New York · Zbl 0031.06502
[18] A. Douady, J. Hubbard, Itération des polynômes quadratiques complexes. C. R. Acad. Sci. Paris Sér. I Math. 294(3), 123-126 (1982) · Zbl 0483.30014
[19] DeMarco, L., Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., 8, 1-2, 57-66 (2001) · Zbl 0991.37030 · doi:10.4310/MRL.2001.v8.n1.a7
[20] L. DeMarco, Combinatorics and topology of the shift locus, in Conformal Dynamics and Hyperbolic Geometry. Contemporary Mathematics, vol. 573 (American Mathematical Society, Providence, 2012), pp. 35-48 · Zbl 1333.37021
[21] L. DeMarco, C. McMullen, Trees and the dynamics of polynomials. Ann. Sci. Éc. Norm. Supér. (4) 41(3), 337-382 (2008) · Zbl 1202.37067
[22] L. DeMarco, K. Pilgrim, The classification of polynomial basins of infinity. Ann. Sci. Éc. Norm. Supér. (4) 50(4), 799-877 (2017) · Zbl 1384.37052
[23] Goldberg, L.; Keen, L., The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift, Invent. Math., 101, 2, 335-372 (1990) · Zbl 0715.58018 · doi:10.1007/BF01231505
[24] Haettel, T.; Kielak, D.; Schwer, P., The 6-strand braid group is \(\text{CAT}(0)\), Geom. Dedicata, 182, 263-286 (2016) · Zbl 1347.20044 · doi:10.1007/s10711-015-0138-9
[25] McMullen, C., Braiding of the attractor and the failure of iterative algorithms, Invent. Math., 91, 2, 259-272 (1988) · Zbl 0654.58023 · doi:10.1007/BF01389368
[26] J. Milnor, Dynamics in One Complex Variable, 3rd edn. Annals of Mathematics Studies, vol. 160 (Princeton University Press, Princeton, 2006) · Zbl 1085.30002
[27] W. Thurston, Thurston’s Notes, MSRI http://library.msri.org/books/gt3m/
[28] W. Thurston, On the geometry and dynamics of iterated rational maps, in Complex Dynamics, ed. by D. Schleicher, N. Selinger and with an appendix by Schleicher (A. K. Peters, Wellesley, 2009), pp. 3-137 · Zbl 1185.37111
[29] W. Thurston, H. Baik, Y. Gao, J. Hubbard, T. Lei, K. Lindsey, D. Thurston, Degree \(d\) invariant laminations. What’s next? The mathematical legacy of William P. Thurston. Annals of Mathematics Studies, vol. 205 (Princeton University Press, Princeton, 2020), pp. 259-325 · Zbl 1452.37055
[30] N. Vlamis, Big mapping class groups: an overview, in The Tradition of Thurston (Springer, Cham, 2020), pp. 459-496 · Zbl 1479.57037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.