×

A new nonconvex low-rank tensor approximation method with applications to hyperspectral images denoising. (English) Zbl 1514.94008

Summary: Hyperspectral images (HSIs) are frequently corrupted by mixing noise during their acquisition and transmission. Such complicated noise may reduce the quality of the obtained HSIs and limit the accuracy of the subsequent processing. By using the low-rank prior of the tensor formed by spatial and spectral information and further exploring the intrinsic structure of the underlying HSI from noisy observations, in this paper, we propose a new nonconvex low-rank tensor approximation method including optimization model and efficient iterative algorithm to eliminate multiple types of noise. The proposed mathematical model consists of a nonconvex low-rank regularization term using the \(\gamma\) nuclear norm, which is nonconvex surrogate to Tucker rank, and two data fidelity terms representing sparse and Gaussian noise components, which are regularized by the \(\ell_1\)-norm and the Frobenius norm, respectively. To solve this model, we propose an efficient augmented Lagrange multiplier algorithm. We also study the convergence and parameter setting of the algorithm. Extensive experimental results show that the proposed method has better denoising performance than the state-of-the-art competing methods for low-rank tensor approximation and noise modeling.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C26 Nonconvex programming, global optimization

Software:

FSIM
Full Text: DOI

References:

[1] Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W., HSI-DeNet: hyperspectral image restoration via convolutional neural network, IEEE Trans. Geosci. Remote Sens., 57, 667-82 (2019) · doi:10.1109/TGRS.2018.2859203
[2] Zhang, H.; Cai, J.; He, W.; Shen, H.; Zhang, L., Double low-rank matrix decomposition for hyperspectral image denoising and destriping, IEEE Trans. Geosci. Remote Sens., 60, 1-19 (2022) · doi:10.1109/TGRS.2021.3061148
[3] Li, X.; Shang, S.; Lee, Z.; Lin, G.; Zhang, Y.; Wu, J.; Kang, Z.; Liu, X.; Yin, C.; Gao, Y., Detection and biomass estimation of Phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements, IEEE Trans. Geosci. Remote Sens., 60, 1-13 (2022) · doi:10.1109/TGRS.2021.3051466
[4] Ren, H.; Ye, X.; Nie, J.; Meng, J.; Fan, W.; Qin, Q.; Liang, Y.; Liu, H., Retrieval of land surface temperature, emissivity and atmospheric parameters from hyperspectral thermal infrared image using a feature-band linear-format hybrid algorithm, IEEE Trans. Geosci. Remote Sens., 60, 1-15 (2022) · doi:10.1109/TGRS.2020.3047381
[5] Sun, L.; Ma, C.; Chen, Y.; Zheng, Y.; Shim, H. J.; Wu, Z.; Jeon, B., Low rank component induced spatial-spectral kernel method for hyperspectral image classification, IEEE Trans. Circuits Syst. Video Technol., 30, 3829-42 (2020) · doi:10.1109/TCSVT.2019.2946723
[6] Zhang, H.; Li, J.; Huang, Y.; Zhang, L., A nonlocal weighted joint sparse representation classification method for hyperspectral imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 2056-65 (2014) · doi:10.1109/JSTARS.2013.2264720
[7] Xie, Q.; Zhou, M.; Zhao, Q.; Xu, Z.; Meng, D., MHF-Net: an interpretable deep network for multispectral and hyperspectral image fusion, IEEE Trans. Pattern Anal. Mach. Intell., 44, 1457-73 (2020) · doi:10.1109/TPAMI.2020.3015691
[8] Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z., Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery, IEEE Trans. Pattern Anal. Mach. Intell., 40, 1888-902 (2018) · doi:10.1109/TPAMI.2017.2734888
[9] Melgani, F.; Bruzzone, L., Classification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens., 42, 1778-90 (2004) · doi:10.1109/TGRS.2004.831865
[10] Bioucas-Dias, J. M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J., Hyperspectral unmixing overview: geometrical, statistical and sparse regression-based approaches, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 354-79 (2012) · doi:10.1109/JSTARS.2012.2194696
[11] Stein, D.; Beaven, S.; Hoff, L.; Winter, E.; Schaum, A.; Stocker, A., Anomaly detection from hyperspectral imagery, IEEE Signal Process. Mag., 19, 58-69 (2002) · doi:10.1109/79.974730
[12] Lu, J.; Tian, J.; Jiang, Q.; Liu, X.; Hu, Z.; Zou, Y., Rician noise removal via weighted nuclear norm penalization, Appl. Comput. Harmon. Anal., 53, 180-98 (2021) · Zbl 1469.65107 · doi:10.1016/j.acha.2020.12.005
[13] Xu, C.; Liu, X.; Zheng, J.; Shen, L.; Jiang, Q.; Lu, J., Nonlocal low-rank regularized two-phase approach for mixed noise removal, Inverse Problems, 37 (2021) · Zbl 1469.94018 · doi:10.1088/1361-6420/ac0c21
[14] Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q., Hyperspectral image restoration using low-rank matrix recovery, IEEE Trans. Geosci. Remote Sens., 52, 4729-43 (2014) · doi:10.1109/TGRS.2013.2284280
[15] He, W.; Yokoya, N.; Yuan, L.; Zhao, Q., Remote sensing image reconstruction using tensor ring completion and total variation, IEEE Trans. Geosci. Remote Sens., 57, 8998-9009 (2019) · doi:10.1109/TGRS.2019.2924017
[16] Lu, C.; Tang, J.; Yan, S.; Lin, Z., Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm, IEEE Trans. Image Process., 25, 829-39 (2016) · Zbl 1408.94866 · doi:10.1109/TIP.2015.2511584
[17] Xie, Y.; Qu, Y.; Tao, D.; Wu, W.; Yuan, Q.; Zhang, W., Hyperspectral image restoration via iteratively regularized weighted Schatten p-norm minimization, IEEE Trans. Geosci. Remote Sens., 54, 4642-59 (2016) · doi:10.1109/TGRS.2016.2547879
[18] Chen, Y.; Guo, Y.; Wang, Y.; Wang, D.; Peng, C.; He, G., Denoising of hyperspectral images using nonconvex low rank matrix approximation, IEEE Trans. Geosci. Remote Sens., 55, 5366-80 (2017) · doi:10.1109/TGRS.2017.2706326
[19] Ye, H.; Li, H.; Yang, B.; Cao, F.; Tang, Y., A novel rank approximation method for mixture noise removal of hyperspectral images, IEEE Trans. Geosci. Remote Sens., 57, 4457-69 (2019) · doi:10.1109/TGRS.2019.2891288
[20] Ye, J.; Zhang, L.; Jiang, B., Hyperspectral image denoising using constraint smooth rank approximation and weighted enhance 3DTV, Displays, 74 (2022) · doi:10.1016/j.displa.2022.102197
[21] Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L., Weighted nuclear norm minimization and its applications to low level vision, Int. J. Comput. Vis., 121, 183-208 (2017) · Zbl 1458.68231 · doi:10.1007/s11263-016-0930-5
[22] Li, Z.; Yan, M.; Zeng, T.; Zhang, G., Phase retrieval from incomplete data via weighted nuclear norm minimization, Pattern Recognit., 125 (2022) · doi:10.1016/j.patcog.2022.108537
[23] Huang, C.; Li, Z.; Liu, Y.; Wu, T.; Zeng, T., Quaternion-based weighted nuclear norm minimization for color image restoration, Pattern Recognit., 128 (2022) · doi:10.1016/j.patcog.2022.108665
[24] Zhang, L.; Zhang, L.; Tao, D.; Huang, X., Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction, IEEE Trans. Geosci. Remote Sens., 51, 242-56 (2013) · doi:10.1109/TGRS.2012.2197860
[25] Fan, H.; Li, C.; Guo, Y.; Kuang, G.; Ma, J., Spatial-spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising, IEEE Trans. Geosci. Remote Sens., 56, 6196-213 (2018) · doi:10.1109/TGRS.2018.2833473
[26] Guo, X.; Huang, X.; Zhang, L.; Zhang, L.; Plaza, A.; Benediktsson, J. A., Support tensor machines for classification of hyperspectral remote sensing imagery, IEEE Trans. Geosci. Remote Sens., 54, 3248-64 (2016) · doi:10.1109/TGRS.2016.2514404
[27] Du, B.; Zhang, M.; Zhang, L.; Hu, R.; Tao, D., PLTD: patch-based low-rank tensor decomposition for hyperspectral images, IEEE Trans. Multimedia, 19, 67-79 (2017) · doi:10.1109/TMM.2016.2608780
[28] Li, S.; Dian, R.; Fang, L.; Bioucas-Dias, J. M., Fusing hyperspectral and multispectral images via coupled sparse tensor factorization, IEEE Trans. Image Process., 27, 4118-30 (2018) · Zbl 1409.94364 · doi:10.1109/TIP.2018.2836307
[29] Renard, N.; Bourennane, S.; Blanc-Talon, J., Denoising and dimensionality reduction using multilinear tools for hyperspectral images, IEEE Geosci. Remote Sens. Lett., 5, 138-42 (2008) · doi:10.1109/LGRS.2008.915736
[30] Chang, Y.; Yan, L.; Chen, B.; Zhong, S.; Tian, Y., Hyperspectral image restoration: where does the low-rank property exist, IEEE Trans. Geosci. Remote Sens., 59, 6869-84 (2021) · doi:10.1109/TGRS.2020.3024623
[31] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 455-500 (2009) · Zbl 1173.65029 · doi:10.1137/07070111X
[32] Kilmer, M. E.; Martin, C. D., Factorization strategies for third-order tensors, Linear Algebr. Appl., 435, 641-58 (2011) · Zbl 1228.15009 · doi:10.1016/j.laa.2010.09.020
[33] Tucker, L., Some mathematical notes on three-mode factor analysis, Psychometrika, 31, 279-311 (1966) · doi:10.1007/BF02289464
[34] Liu, X.; Bourennane, S.; Fossati, C., Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis, IEEE Trans. Geosci. Remote Sens., 50, 3717-24 (2012) · doi:10.1109/TGRS.2012.2187063
[35] Guo, X.; Huang, X.; Zhang, L.; Zhang, L., Hyperspectral image noise reduction based on rank-1 tensor decomposition, ISPRS J. Photogramm. Remote Sens., 83, 50-63 (2013) · doi:10.1016/j.isprsjprs.2013.06.001
[36] Fan, H.; Chen, Y.; Guo, Y.; Zhang, H.; Kuang, G., Hyperspectral image restoration using low-rank tensor recovery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 4589-604 (2017) · doi:10.1109/JSTARS.2017.2714338
[37] Zheng, Y.; Huang, T.; Zhao, X.; Jiang, T.; Ji, T.; Ma, T., Tensor N-tubal rank and its convex relaxation for low-rank tensor recovery, Inf. Sci., 532, 170-89 (2020) · Zbl 1459.68181 · doi:10.1016/j.ins.2020.05.005
[38] Renard, N.; Bourennane, S.; Blanc-Talon, J., Denoising and dimensionality reduction using multilinear tools for hyperspectral images, IEEE Geosci. Remote Sens. Lett., 5, 138-42 (2008) · doi:10.1109/LGRS.2008.915736
[39] Wang, Y.; Peng, J.; Zhao, Q.; Leung, Y.; Zhao, X-L; Meng, D., Hyperspectral image restoration via total variation regularized low-rank tensor decomposition, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 1227-43 (2018) · doi:10.1109/JSTARS.2017.2779539
[40] Liu, J.; Musialski, P.; Wonka, P.; Ye, J., Tensor completion for estimating missing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell., 35, 208-20 (2012) · doi:10.1109/TPAMI.2012.39
[41] Kang, Z.; Peng, C.; Cheng, Q., Robust PCA via nonconvex rank approximation, pp 211-20 (2015)
[42] Yang, Y.; Han, L.; Liu, Y.; Zhu, J.; Yan, H., A novel regularized model for third-order tensor completion, IEEE Trans. Signal Process., 69, 3473-83 (2021) · Zbl 07591570 · doi:10.1109/TSP.2021.3086363
[43] Lin, J.; Huang, T.; Zhao, X.; Ma, T.; Jiang, T.; Zheng, Y., A novel non-convex low-rank tensor approximation model for hyperspectral image restoration, Appl. Math. Comput., 408 (2021) · Zbl 1510.94018 · doi:10.1016/j.amc.2021.126342
[44] Liu, X.; Lu, J.; Shen, L.; Xu, C.; Xu, Y., Multiplicative noise removal: nonlocal low-rank model and its proximal alternating reweighted minimization algorithm, SIAM J. Imaging Sci., 13, 1595-629 (2020) · Zbl 1501.94003 · doi:10.1137/20M1313167
[45] Zou, Y.; Hu, H.; Lu, J.; Liu, X.; Jiang, Q.; Song, G., A nonlocal low-rank regularization method for fractal image coding, Fractals, 29 (2021) · Zbl 1481.94047 · doi:10.1142/S0218348X21501255
[46] Lin, Z.; Chen, M.; Ma, Y., The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices (2010)
[47] Kang, Z.; Peng, C.; Cheng, J.; Cheng, Q., LogDet rank minimization with application to subspace clustering, Comput. Intell. Neurosci., 2015 (2015) · doi:10.1155/2015/824289
[48] Pham Dinh, T.; Le Thi, H. A., Convex analysis approach to DC programming: theory, algorithm and applications, Acta Math. Vietnam., 22, 289-355 (1997) · Zbl 0895.90152
[49] Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A., Nonlocal transform-domain filter for volumetric data denoising and reconstruction, IEEE Trans. Image Process., 22, 119-33 (2013) · Zbl 1373.94273 · doi:10.1109/TIP.2012.2210725
[50] Bovik, A. C., Handbook of Image and Video Processing (2010), New York: Academic, New York
[51] Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 600-12 (2004) · doi:10.1109/TIP.2003.819861
[52] Zhang, L.; Zhang, L.; Mou, X.; Zhang, D., FSIM: a feature similarity index for image quality assessment, IEEE Trans. Image Process., 20, 2378-86 (2011) · Zbl 1373.62333 · doi:10.1109/TIP.2011.2109730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.