×

Time and space generalized diffusion equation on graph/networks. (English) Zbl 1506.35253


MSC:

35R02 PDEs on graphs and networks (ramified or polygonal spaces)
35K57 Reaction-diffusion equations

References:

[1] Bunde, A.; Caro, J.; Kaerger, J.; Vogl, G., Diffusive spreading in nature, technology and society (2018), Springer · Zbl 1405.00009
[2] Chen, L.; Painter, K.; Surulescu, C.; Zhigun, A., Mathematical models for cell migration: a non-local perspective, Philos Trans R Soc B, 375, 1807, 20190379 (2020)
[3] rsos.201536
[4] Yu, C.; Guan, J.; Chen, K.; Bae, S. C.; Granick, S., Single-molecule observation of long jumps in polymer adsorption, ACS Nano, 7, 11, 9735-9742 (2013)
[5] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, 339, 1, 1-77 (2000) · Zbl 0984.82032
[6] Sokolov, I. M., Models of anomalous diffusion in crowded environments, Soft Matter, 8, 35, 9043-9052 (2012)
[7] Li, B.; Wang, J., Anomalous heat conduction and anomalous diffusion in one-dimensional systems, Phys Rev Lett, 91, 4, 044301 (2003)
[8] Kong, M.; Van Houten, B., Rad4 recognition-at-a-distance: physical basis of conformation-specific anomalous diffusion of DNA repair proteins, Prog Biophys Mol Biol, 127, 93-104 (2017)
[9] Barbi, M.; Place, C.; Popkov, V.; Salerno, M., A model of sequence-dependent protein diffusion along DNA, J Biol Phys, 30, 3, 203-226 (2004)
[10] Liu, L.; Cherstvy, A. G.; Metzler, R., Facilitated diffusion of transcription factor proteins with anomalous bulk diffusion, J Phys Chem B, 121, 6, 1284-1289 (2017)
[11] Weiss, M.; Elsner, M.; Kartberg, F.; Nilsson, T., Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells, Biophys J, 87, 5, 3518-3524 (2004)
[12] Banks, D. S.; Fradin, C., Anomalous diffusion of proteins due to molecular crowding, Biophys J, 89, 5, 2960-2971 (2005)
[13] Golding, I.; Cox, E. C., Physical nature of bacterial cytoplasm, Phys Rev Lett, 96, 9, 098102 (2006)
[14] Gupta, S.; Biehl, R.; Sill, C.; Allgaier, J.; Sharp, M.; Ohl, M., Protein entrapment in polymeric mesh: diffusion in crowded environment with fast process on short scales, Macromolecules, 49, 5, 1941-1949 (2016)
[15] Tan, P.; Liang, Y.; Xu, Q.; Mamontov, E.; Li, J.; Xing, X., Gradual crossover from subdiffusion to normal diffusion: a many-body effect in protein surface water, Phys Rev Lett, 120, 24, 248101 (2018)
[16] Jiang, C.; Cui, C.; Li, L.; Shao, Y., The anomalous diffusion of a tumor invading with different surrounding tissues, PLoS One, 9, 10, e109784 (2014)
[17] Bursac, P.; Lenormand, G.; Fabry, B.; Oliver, M.; Weitz, D. A.; Viasnoff, V., Cytoskeletal remodelling and slow dynamics in the living cell, Nat Mater, 4, 7, 557-561 (2005)
[18] Shimamoto, N., One-dimensional diffusion of proteins along DNA: its biological and chemical significance revealed by single-molecule measurements, J Biol Chem, 274, 22, 15293-15296 (1999)
[19] Gorman, J.; Greene, E. C., Visualizing one-dimensional diffusion of proteins along DNA, Nat Struct Mol Biol, 15, 8, 768-774 (2008)
[20] Song, J.-J.; Bhattacharya, R.; Kim, H.; Chang, J.; Tang, T.-Y.; Guo, H., One-dimensional anomalous diffusion of gold nanoparticles in a polymer melt, Phys Rev Lett, 122, 10, 107802 (2019)
[21] Sagi, Y.; Brook, M.; Almog, I.; Davidson, N., Observation of anomalous diffusion and fractional self-similarity in one dimension, Phys Rev Lett, 108, 9, 093002 (2012)
[22] Stauffer, D.; Schulze, C.; Heermann, D. W., Superdiffusion in a model for diffusion in a molecularly crowded environment, J Biol Phys, 33, 4, 305 (2007)
[23] Livshits, G. I.; Stern, A.; Rotem, D.; Borovok, N.; Eidelshtein, G.; Migliore, A., Long-range charge transport in single G-quadruplex DNA molecules, Nat Nanotechnol, 9, 12, 1040-1046 (2014)
[24] Schmidt, H. G.; Sewitz, S.; Andrews, S. S.; Lipkow, K., An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding, PLoS One, 9, 10, e108575 (2014)
[25] Sheinman, M.; Kafri, Y., The effects of intersegmental transfers on target location by proteins, Phys Biol, 6, 1, 016003 (2009)
[26] Krepel, D.; Levy, Y., Intersegmental transfer of proteins between DNAregions in the presence of crowding, Phys Chem Chem Phys, 19, 45, 30562-30569 (2017)
[27] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D., Complex networks: structure and dynamics, Phys Rep, 424, 4-5, 175-308 (2006) · Zbl 1371.82002
[28] Estrada, E., The structure of complex networks: theory and applications (2011), Oxford University Press: Oxford University Press Oxford
[29] Tarasov, V. E., No nonlocality. No fractional derivative, Commun Nonlinear Sci Numer Simul, 62, 157-163 (2018) · Zbl 1470.26014
[30] Du, M.; Wang, Z.; Hu, H., Measuring memory with the order of fractional derivative, Sci Rep, 3, 1, 1-3 (2013)
[31] Estrada, E., Path Laplacian matrices: introduction and application to the analysis of consensus in networks, Linear Algebra Appl, 436, 9, 3373-3391 (2012) · Zbl 1241.05077
[32] Estrada, E.; Hameed, E.; Hatano, N.; Langer, M., Path Laplacian operators and superdiffusive processes on graphs. I. One-dimensional case, Linear Algebra Appl, 523, 307-334 (2017) · Zbl 06766348
[33] Estrada, E.; Hameed, E.; Langer, M.; Puchalska, A., Path Laplacian operators and superdiffusive processes on graphs. II. Two-dimensional lattice, Linear Algebra Appl, 555, 373-397 (2018) · Zbl 06914735
[34] Estrada, E., Path Laplacians versus fractional Laplacians as nonlocal operators on networks, New J Phys, 23, 7, 073049 (2021)
[35] Balakrishnan, V., Anomalous diffusion in one dimension, Phys A, 132, 2-3, 569-580 (1985) · Zbl 0654.60065
[36] Anguige, K.; Schmeiser, C., A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion, J Math Biol, 58, 3, 395-427 (2009) · Zbl 1162.92009
[37] Villamaina, D.; Sarracino, A.; Gradenigo, G.; Puglisi, A.; Vulpiani, A., On anomalous diffusion and the out of equilibrium response function in one-dimensional models, J Stat Mech, 2011, 01, L01002 (2011)
[38] Padgett, J.; Kostadinova, E.; Liaw, C.; Busse, K.; Matthews, L.; Hyde, T., Anomalous diffusion in one-dimensional disordered systems: a discrete fractional Laplacian method, J Phys A, 53, 13, 135205 (2020) · Zbl 1514.60113
[39] Nakade, S.; Kanki, K.; Tanaka, S.; Petrosky, T., Anomalous diffusion of a quantum Brownian particle in a one-dimensional molecular chain, Phys Rev E, 102, 3, 032137 (2020)
[40] Jespersen, S.; Metzler, R.; Fogedby, H. C., Levy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions, Phys Rev E, 59, 3, 2736-2745 (1999)
[41] Dybiec, B.; Gudowska-Nowak, E.; Barkai, E.; Dubkov, A. A., Levy flights versus Levy walks in bounded domains, Phys Rev E, 95, 5, 052102 (2017)
[42] Klafter, J.; Blumen, A.; Shlesinger, M. F., Stochastic pathway to anomalous diffusion, Phys Rev A, 35, 7, 3081-3085 (1987)
[43] Allen-Perkins, A.; Serrano, A. B.; de Assis, T. A.; Andrade, R. F.S., Approach to the inverse problem of superdiffusion on finite systems based on time-dependent long-range navigation, Phys Rev E, 100, 3, 030101 (2019)
[44] Murugan, R., Generalized theory of site-specific DNA-protein interactions, Phys Rev E, 76, 1, 011901 (2007)
[45] Koslover, E. F.; de la Rosa, M. D.; Spakowitz, A. J., Crowding and hopping in a protein’s diffusive transport on DNA, J Phys A, 50, 7, 074005 (2017) · Zbl 1358.92042
[46] Reynolds, A., On the anomalous diffusion characteristics of membrane-bound proteins, Phys Lett A, 342, 5-6, 439-442 (2005)
[47] Garrappa, R.; Popolizio, M., Computing the matrix Mittag-Leffler function with applications to fractional calculus, J Sci Comput, 77, 1, 129-153 (2018) · Zbl 1406.65031
[48] Alves, S. B.; de Oliveira, G. F.; de Oliveira, L. C.; Passerat de Silans, T.; Chevrollier, M.; Oriá, M., Characterization of diffusion processes: normal and anomalous regimes, Phys A, 447, 392-401 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.