×

\(L^p\) norms and support of eigenfunctions on graphs. (English) Zbl 1442.82006

Summary: This article is concerned with properties of delocalization for eigenfunctions of Schrödinger operators on large finite graphs. More specifically, we show that the eigenfunctions have a large support and we assess their \(\ell^p\)-norms. Our estimates hold for any fixed, possibly irregular graph, in prescribed energy regions, and also for certain sequences of graphs such as \(N\)-lifts.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
47B80 Random linear operators
60H25 Random operators and equations (aspects of stochastic analysis)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)

References:

[1] Aizenman, M., Warzel, S.: Random Operators. Disorder Effects on Quantum Spectra and Dynamics, GSM 168, AMS (2015) · Zbl 1333.82001
[2] De Luca, A.; Altshuler, Bl; Kravtsov, Ve; Scardicchio, A., Anderson localization on the bethe lattice: nonergodicity of extended states, Phys. Rev. Lett., 113, 046806 (2014) · doi:10.1103/PhysRevLett.113.046806
[3] De Luca, A., Altshuler, B.L., Kravtsov, V.E., Scardicchio, A.: Support set of random wave-functions on the Bethe lattice, arXiv (2013)
[4] Aldous, D.; Lyons, R., Processes on unimodular random networks, Electron. J. Probab., 12, 1454-1508 (2007) · Zbl 1131.60003 · doi:10.1214/EJP.v12-463
[5] Amit, A.; Linial, N., Random graph coverings I: General theory and graph connectivity, Combinatorica, 22, 1-18 (2002) · Zbl 0996.05105 · doi:10.1007/s004930200000
[6] Amit, A.; Linial, N.; Matoušek, J., Random lifts of graphs: independence and chromatic number, Random Struct. Algorithms, 20, 1-22 (2002) · Zbl 0993.05071 · doi:10.1002/rsa.10003
[7] Anantharaman, N., Quantum ergodicity on regular graphs, Commun. Math. Phys., 353, 633-690 (2017) · Zbl 1368.58015 · doi:10.1007/s00220-017-2879-9
[8] Anantharaman, N.; Le Masson, E., Quantum ergodicity on large regular graphs, Duke Math. J., 164, 723-765 (2015) · Zbl 1386.58015 · doi:10.1215/00127094-2881592
[9] Anantharaman, N., Sabri, M.: Quantum ergodicity on graphs: from spectral to spatial delocalization, arXiv:1704.02766. To appear in the Annals of Math · Zbl 1423.58021
[10] Anantharaman, N.; Sabri, M., Quantum ergodicity for the Anderson model on regular graphs, J. Math. Phys., 58, 091901 (2017) · Zbl 1376.82091 · doi:10.1063/1.5000962
[11] Anantharaman, N., Sabri, M.: Recent results of quantum ergodicity on graphs and further investigation, arXiv:1711.07666. To appear in Annales de la faculté des Sciences de Toulouse · Zbl 1434.82037
[12] Anantharaman, N.; Sabri, M., Poisson kernel expansions for Schrödinger operators on trees, J. Spectr. Theory, 9, 243-268 (2019) · Zbl 1410.81022 · doi:10.4171/JST/247
[13] Benjamini, I.; Schramm, O., Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., 6, 13 (2001) · Zbl 1010.82021 · doi:10.1214/EJP.v6-96
[14] Bauerschmidt, R., Huang, J., Yau, H.-T.: Local Kesten-McKay law for random regular graphs, arXiv:1609.09052 · Zbl 1414.05260
[15] Bilu, Y.; Linial, N., Lifts, discrepancy and nearly optimal spectral gap, Combinatorica, 26, 495-519 (2006) · Zbl 1121.05054 · doi:10.1007/s00493-006-0029-7
[16] Bordenave, C.: A new proof of Friedman’s second eigenvalue Theorem and its extension to random lifts, arXiv:1502.04482 · Zbl 1462.05324
[17] Bordenave, C.: Spectral measures of random graphs, lecture notes, author’s homepage
[18] Bordenave, C.; Sen, A.; Virag, B., Mean quantum percolation, J. Eur. Math. Soc. (JEMS), 19, 3679-3707 (2017) · Zbl 1385.60057 · doi:10.4171/JEMS/750
[19] Brito, G., Dumitriu, I., Ganguly, S., Hoffman, C., Tran, L. V.: Recovery and Rigidity in a Regular Stochastic Block Model, arXiv:1507.00930 · Zbl 1410.68283
[20] Brooks, S.; Lindenstrauss, E., Non-localization of eigenfunctions on large regular graphs, Israel J. Math., 193, 1-14 (2013) · Zbl 1317.05110 · doi:10.1007/s11856-012-0096-y
[21] Brooks, S., Le Masson, E.: \(L^p\) norms of eigenfunctions on regular graphs and on the sphere. Int. Math. Res. Not. published online · Zbl 1479.05193
[22] Brooks, S.; Le Masson, E.; Lindenstrauss, E., Quantum ergodicity and averaging operators on the sphere, Int. Math. Res. Not, 19, 6034-6064 (2016) · Zbl 1404.35307 · doi:10.1093/imrn/rnv337
[23] Friedman, J., Relative expanders or weakly relatively Ramanujan graphs, Duke Math. J., 118, 19-35 (2003) · Zbl 1035.05058 · doi:10.1215/S0012-7094-03-11812-8
[24] Geisinger, L., Convergence of the density of states and delocalization of eigenvectors on random regular graphs, J. Spectr. Theory, 5, 783-827 (2015) · Zbl 1384.60024 · doi:10.4171/JST/114
[25] Hassell, A.; Tacy, M., Improvement of eigenfunction estimates on manifolds of nonpositive curvature, Forum Math., 27, 1435-1451 (2015) · Zbl 1410.35264 · doi:10.1515/forum-2012-0176
[26] Kawarabayashi, T.; Suzuki, M., Decay rate of the Green function in a random potential on the Bethe lattice and a criterion for localization, J. Phys. A. Math. Gen., 26, 5729-5750 (1993) · doi:10.1088/0305-4470/26/21/014
[27] Keller, M.; Lenz, D.; Warzel, S., On the spectral theory of trees with finite cone type, Isr. J. Math., 194, 107-135 (2013) · Zbl 1270.47003 · doi:10.1007/s11856-012-0059-3
[28] Kirsch, W., An invitation to random Schrödinger operators, in Random Schrödinger operators, Panor. Synthèses, 25, 1-119 (2008) · Zbl 1162.82004
[29] Klein, A., Extended states in the Anderson model on the Bethe lattice, Adv. Math., 133, 163-184 (1998) · Zbl 0899.60088 · doi:10.1006/aima.1997.1688
[30] Mckay, Bd; Wormald, Nc; Wysocka, B., Short cycles in random regular graphs, Electron. J. Combin., 11, 12 (2004) · Zbl 1063.05122
[31] Metz, Fl; Castillo, Ip, Level compressibility for the Anderson model on regular random graphs and the eigenvalue statistics in the extended phase, Phys. Rev. B, 96, 064202 (2017) · doi:10.1103/PhysRevB.96.064202
[32] Ortner, R.; Woess, W., Non-backtracking random walks and cogrowth of graphs, Canad. J. Math., 59, 828-844 (2007) · Zbl 1123.05081 · doi:10.4153/CJM-2007-035-1
[33] Puder, D., Expansion of random graphs: new proofs, new results, Invent. Math., 201, 845-908 (2015) · Zbl 1320.05115 · doi:10.1007/s00222-014-0560-x
[34] Simon, B.: Spectral analysis of rank one perturbations and applications. In: Mathematical Quantum Theory. II. Schrödinger Operators, AMS (1995) · Zbl 0824.47019
[35] Simon, B.: Szegő’s theorem and its descendants. Spectral theory for \(L^2\) perturbations of orthogonal polynomials, M. B. Porter Lectures, PUP (2011) · Zbl 1230.33001
[36] Tikhonov, Ks; Mirlin, Ad; Skvortsov, Ma, Anderson localization and ergodicity on random regular graphs, Phys. Rev. B, 94, 220203 (2016) · doi:10.1103/PhysRevB.94.220203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.